
H2

Creating Chaos | Chaos Day Playbook 1

https://chaos-day.playbook.ee/

Ready for

Chaos

Complementary

approaches

How What

next?

11 4422 55 7733 66
Creating

Chaos

5-minute

guide
What &

why

23 When are you ready

for chaos?

20 Overview

21 Running a mini chaos event

26 Overview

28 Timeline

31 Who to involve in a

Chaos Day

32 What experiments to

run on a Chaos Day

34 Experiment

brainstorm

38 Experiment design &

preparation

40 When to run a

Chaos Day

42 Where to run a

Chaos Day

44 How a Chaos Day

unfolds

46 Learning from

a Chaos Day

49 Overview13 5-minute guide to

running a Chaos Day

15 Chaos planning

17 Experiment

execution

18 Chaos review

18 Sharing the

knowledge gained

8 Why Chaos?

10 What benefits

do Chaos Days

provide?

4 Overview

5 Who’s this

playbook for

6 Related

playbooks

Creating Chaos | Chaos Day Playbook 4

The Equal Experts Chaos Day Playbook is a distillation of our

thinking on how best to run a Chaos Day. It draws from our

experience of running many Chaos Days across a diverse set

of clients, ranging from large public-sector departments to

private-sector retail organisations.

For readers who are pressed for time and already familiar with basic chaos

engineering concepts, you can jump to the 5-minute guide to running a Chaos

Day, and the case study on condensing the entire process into a 2.5 hour mini

chaos event.

For those that want more depth, read on.

We have open-sourced this under a Creative Commons license and encourage

contributions to iteratively improve our content.

https://www.equalexperts.com/blog/our-thinking/chaos-day/
https://www.equalexperts.com/blog/our-thinking/equal-experts-engineer-chaos-at-john-lewis-partners/
https://creativecommons.org/licenses/by-nc/4.0/

We’ve created this playbook to help teams

and organisations design, plan, execute

and review a Chaos Day.

It’s not just for engineers; it is for everyone involved in delivering software.

Product owners can learn more about the risks and impacts of failure, testers

can learn how to explore edge cases and test for resilience and designers can

benefit from a greater understanding of the user experience of failure and how

to design interfaces that are adaptable.

This playbook is for any organisation, regardless of their tech stack or

maturity. You don’t have to use containers, Kubernetes, or be in AWS,

GCP, Azure or any other cloud platform to gain the benefits of probing

your system’s response to failure.

Who’s this playbook for?

Creating Chaos | Chaos Day Playbook 5

Chaos Days are great opportu-

nities to run experiments that

explore security threats. For a

distillation of our thinking on

how best to apply security within

continuous delivery, look at our

Secure Delivery Playbook.

We’ve written other playbooks that complement this one well:

Chaos Days can be run with

co-located and distributed teams

alike. If some or all of your team

is remote, our Remote Working

Playbook might be of interest.

Any size of service benefits from

Chaos Engineering. This playbook

describes an approach that can

be scaled up from a single service

to an entire platform. We’ve

further advice on why, when, and

how to build a Digital Platform in

our Digital Platform Playbook.

For teams practising the You Build

It You Run It (YBIYRI) operating

model to build, deploy, operate,

and support their own digital

services, Chaos Days is a perfect

tool to better understand how

their services respond to failure.

You can learn more about the

YBIYRI model in our You Build

It, You Run It Playbook, by Steve

Smith and Bethan Timmins.

Related playbooks

Remote working

Playbook
Secure delivery

Playbook

Creating Chaos | Chaos Day Playbook 6

https://secure-delivery.playbook.ee/
https://www.playbook.ee/
https://remote-working.playbook.ee/
https://remote-working.playbook.ee/
https://digital-platform.playbook.ee/
https://you-build-it-you-run-it.playbook.ee/
https://you-build-it-you-run-it.playbook.ee/

Chaos Days are a practice within the field of Chaos engineering, which is

defined as:

The discipline of experi-

menting on a system in order

to build confidence in the

system’s capability to with-

stand turbulent conditions in

production.

Modern systems consist of a high number of complex components, with

equally complex connections between them. Defects are always present, and

failures will occur. For an IT system, turbulence comes in many forms, ranging

from single-point to multiple, unrelated failures, often combined with sudden

changes in external pressure (e.g., traffic spikes).

The complexity of IT systems makes it impossible to predict how they will re-

spond to this turbulence. One such example was a Google Cloud Outage that

led to reports of people being unable to operate their home air-conditioning.

The trigger was the combined impact of three separate, unrelated bugs, which

severely impacted the Google Cloud US network for several hours.

Why Chaos

8What & Why | Chaos Day Playbook

https://principlesofchaos.org/
https://status.cloud.google.com/incident/cloud-networking/19009
https://twitter.com/zeynep/status/1135307241320587264

9What & Why | Chaos Day Playbook

Chaos Days allow teams to safely explore these turbulent conditions by de-

signing and running controlled experiments in pre-production or production

environments. Each experiment injects a failure into the system (e.g., termi-

nate a compute instance, fill up a storage device) in order to analyse the impact

and system response.

An IT system includes the people who develop and operate it and the knowl-

edge, experience, tools and processes they use to respond to incidents.

As John Allspaw puts it:

People are the adaptable

element of complex systems.

The analysis of a team’s response to incidents provides many lessons that can

lead to improved system resilience. The Oxford Dictionary defines resilience as:

• the capacity to recover quickly from difficulties

• the ability of a substance or object to spring back into shape; elasticity.

Some learning may be technical, such as implementing retry mechanisms and

circuit breakers; other types of learning include the processes a team uses to

detect, triage and resolve an incident (such as communication channels, escala-

tion routes, runbooks, etc.).

A key but often underestimated benefit is the sharing of internal knowledge

that individual team members rely on when working through an incident. By

spreading this knowledge across the team, resilience is improved just through

people’s greater cognisance of system behaviour and failure scenarios when

tackling production incidents or developing system enhancements.

What benefits do Chaos Days provide?

10What & Why | Chaos Day Playbook

https://vimeo.com/showcase/6542214/video/370008157
https://vimeo.com/showcase/6542214/video/370008157
https://www.lexico.com/en/definition/resilience

Chaos Days improve system resilience by developing its:

11What & Why | Chaos Day Playbook

• knowledge about system behaviour

• expertise in diagnosing and resolving

incidents

• skills and behaviours in collaborating,

communicating and thinking during

high-stress periods

• understanding of how ownership and

operability impact system recovery

• incident management (such as

communication channels, team roles,

timeline documentation)

• incident analysis (e.g., improving how

post-incident reviews are conducted)

• engineering approach (e.g., feature

requirements including how faults

should be handled and how resilience

testing is performed during feature

development)

• Make services more resilient (e.g.,

implementing retries when a downstream

fails).

• Make services and dependencies simpler

and easier to reason about, which is

important when under pressure.

• Improve observability so that engineers

can isolate failures and fix them faster.

• Improve documentation, such as more

informative exception messages and

runbook documentation.

https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

5-minute guide to running a Chaos Day

If you already know what Chaos Days are, why they are beneficial and if you’re

ready to run one, read on. If you’d like to start by getting a firmer understand-

ing, skip over this section and read What and why.

This section is a bare-bones

version of the What and

How of running a Chaos

Day. The rest of the playbook

expands each step, covering

the key outcomes, common

problems and examples of

application.

5-minute guide to running a Chaos Day

135-minute guide | Chaos Day Playbook

The steps for running a Chaos Day are:

145-minute guide | Chaos Day Playbook

 who, what, when, where execution, impact, response
and chaos mechanics

knowledge gained the experiments

Start small: involve one or two teams, not the entire engineering group.

Identify a few of the most experienced engineers across those teams.

These people will be the agents of chaos, and will design and execute

the experiments.

At least two weeks before Chaos Day, arrange a planning session with

the whole team. As Norah Jones describes in Chaos Engineering Trap 2,

it is important to have everyone involved at this stage to maximise the

learning across the team. Draw the system architecture on a white-

board (or remote equivalent), then use sticky notes and/or a Trello board

to brainstorm possible experiments that simulate a failure that your

system should tolerate. Don’t focus on failures that you have no control

over, such as an outage within your cloud provider, as they have low

learning value.

With the brainstorming complete, to provide most surprise on the

Chaos Day itself, reduce the group to just the agents of chaos. They can

then consider, for each experiment:

• Failure mode (e.g., partial connectivity loss, an instance being

terminated, network slowdown).

• Expected impact in both technical and business terms (e.g.,

dependent services fail, or in-progress customer transactions are

halted).

• Anticipated response (e.g., the service auto-heals, an alert is fired,

or nobody notices).

• If the failure remains unresolved, how would the injected fault be

rolled back?

• Should the experiment be run in isolation (e.g., would a

degradation in monitoring limit learning from other experiments)?

• Which environment will it be run on? Our experience suggests

that using the same pre-production environment for all

experiments makes execution easier, providing valuable learning,

without production’s costs and risks.

Chaos planning

155-minute guide | Chaos Day Playbook

1

2

3

4

https://medium.com/@njones_18523/chaos-engineering-traps-e3486c526059
https://remote-working.playbook.ee/remote-working-runbooks/remote-workshops

Determine a date for Chaos Day, check that it won’t impact key business

events (e.g., if the target environment is severely degraded, checking

this won’t delay any production releases that need to pass through it

around that date).

Schedule post-chaos review meetings for participating teams (as close

to after Chaos Day as possible).

Shortlist 4–8 experiments based on business risk and learning opportu-

nity (e.g., what failure mode would have the greatest risk to the business

and a system response that you’re uncertain about?).

Prepare the experiments (hence, the two-week gap between planning

and the main event), keeping them secret from the participating teams

to maximise the realism of unexpected failures.

165-minute guide | Chaos Day Playbook

5 7

6
8

Let participating teams know when Chaos Day is, and that they should

treat failures in the target environment as if “production were on fire”.

Ensure that participating teams know which communication channel(s)

to use (e.g., a public #pre-prod-incidents Slack channel), to aid docu-

menting response timelines.

Provide a physical or remote space and plenty of snacks for the agents

of chaos. A facilitator can help the team keep pace through the exper-

iments (we’ve found using the Trello board from planning to be helpful

here, with additional columns for experiments: In Progress, Resolved by

Agents, Resolved by Owning Team).

Monitor each experiment closely, analysing and documenting impact

and team response. A private Slack channel is useful (e.g., #agents-of-

chaos), as is the Trello board.

Ensure experiments are concluded and normal service restored before

the end of the day.

Experiment execution

175-minute guide | Chaos Day Playbook

1

2

3

4

5

https://remote-working.playbook.ee/remote-working-runbooks/remote-workshops

Chaos review Sharing the knowledge gained

Run reviews for each experiment, with a wide group of people: the

agents of chaos, those who responded, or helped with a diagnosis and

resolution, plus their colleagues.

Structure each review as a post-incident review / post-mortem. Walk

through the timeline, discussing and documenting what people saw,

thought and did or didn’t do. Focus on surfacing new knowledge about

system behaviour, instead of improvement tasks. If ideas for improve-

ment come up, note them and assign an owner to consider them later,

to avoid knee-jerk resilience solutions.

Identify improvements you could make to the mechanics of running the

Chaos Day itself. Document them somewhere you and others can easily

return to when you run the next one (improvements to this playbook are

also most welcome!).

Disseminate the review write-ups as widely as possible, so other engineers,

teams, and wider stakeholders can benefit from the new-found knowledge.

This could include posting them on a wiki, sharing them on Slack and present-

ing them at a show-and-tell.

185-minute guide | Chaos Day Playbook

1

2

3

https://sre.google/sre-book/postmortem-culture/

• AWS Game Days. AWS runs these days to teach design and diagnosis

techniques for improving resilience using an AWS-based fake production

service. They are intense and great fun but don’t teach you anything

about your own system.

• Per feature chaos testing. When a team builds a new feature, they

run manual or automated experiments to explore the feature’s impact

on system resilience as part of its testing. This can be a good way to

introduce chaos-engineering principles, as well as help teams shift-left

operability thinking (i.e., consider it earlier in the engineering process,

instead of when the first product issue hits).

• Purple team security exercises. These exercises help to identify

vulnerabilities and weaknesses in a product by simulating the

behaviours and techniques of malicious attackers in the most realistic

way possible.

• Automated failure injection. Tools such as AWS’s Fault Injection

Simulator, Gremlin and Netflix’s Chaos Monkey can be used to inject

regular but random failures to test the system response on an ongoing

basis.

• Production incidents. Treat production incidents as learning

opportunities, or in the words of John Allspaw, “Incidents are unplanned

investments”. If managed well (see Google’s SRE book and Etsy’s

debriefing guide), then valuable, firsthand insights can be gained due

to everything about the chaos being real! Live issues can be costly to

the business. Therefore, it is beneficial to extract as much business

value from them as possible, which can be achieved through a better

understanding of the system and possible resilience improvements.

• Running a mini chaos event, as described next.

Chaos Days are one of many tools for improving system resilience.

Others include:

20Complimentary approaches | Chaos Day Playbook

https://aws.amazon.com/gameday/
https://en.wikipedia.org/wiki/Shift-left_testing
https://secure-delivery.playbook.ee/practices/operate/security-testing-in-production#use-purple-team-exercises
https://aws.amazon.com/fis/
https://aws.amazon.com/fis/
https://www.gremlin.com/
https://github.com/netflix/chaosmonkey
https://twitter.com/allspaw/status/1233778870635155456
https://sre.google/sre-book/postmortem-culture/
https://extfiles.etsy.com/DebriefingFacilitationGuide.pdf
https://extfiles.etsy.com/DebriefingFacilitationGuide.pdf

H2

Working together with the team leads, we prioritised and selected experiments

that allowed the team to investigate potential failures combining a high level of

impact with an unknown response, because this would provide the best condi-

tions for the team to understand more about how their service worked.

The team had built an authenticated user journey to manage personal details

and payment methods. During an experiment selection exercise, we found

a great example of a high impact/unknown response failure in the journey

whereby if a request failed to be sent to the authentication provider it could

prevent users from being able to login.

The potential failure had a high impact on the user experience and the team

was unsure of the response with the authentication provider hosting the login

pages. It was not clear if any alerts would be fired and if they would be noti-

fied.

One of our clients found it beneficial to condense the Chaos Day process into a

2.5 hour mini chaos event.

In a recent engagement, time was limited to spend on proactive failure inves-

tigations. The digital platform team took on the role of facilitators for nine

delivery teams to introduce chaos engineering principles and help increase

understanding of the digital services they were building and operating. With

limited time for the exercises across all the teams, we ran 2.5-hour sessions

that included two experiments and a post-incident review, instead of running

full chaos days with multiple ongoing scenarios.

To choose experiments under those conditions, we ran experiment selection

sessions with the team leads to select potential failures to investigate and

gather knowledge on based on two factors:

• the level of impact a potential failure could have on the user, team, or

organisation

• whether the response to that potential failure was known or unknown

either by the service, team, or other parts of the organisation

Condensing a Chaos Day into 2.5 hours to increase understanding of digital services

Running a mini chaos event

21Complimentary approaches | Chaos Day Playbook

Adam Hansrod

Equal Experts, UK

https://www.linkedin.com/in/adam-hansrod-22940876/

Running a Chaos Day requires people’s

time and system usage, so it needs

to be as carefully scheduled as any

other piece of work. The immediate

benefit of a Chaos Day might not be as

appealing or tangible as new features.

This means that investment in a Chaos

Day is frequently put off.

This challenge can be addressed by starting with the smaller investment of

a time-boxed system risk assessment using an approach such as FAIR. This

provides an opportunity to explore what failures could happen, their frequency

and the magnitude of their impact. This gives meaningful, monetary data that

can help stakeholders re-evaluate prioritising features over resilience.

Chaos Days provide particular benefits if run weeks or months before major

changes are deployed to production, or ahead of traffic peaks such as Black

Friday for e-commerce sites. Ensure there is a sufficient gap between consecu-

tive events to allow for learning to be distilled and improvements to be applied.

For one client with a very large platform (1,000 microservices, processing 1

billion requests on a peak day), we found that 2–3 Chaos Days each year was a

suitable frequency for their context.

When are you ready for chaos?

23Ready for Chaos | Chaos Day Playbook

https://www.fairinstitute.org/what-is-fair

Despite the many benefits of Chaos

Days, if your production system is

regularly ‘on fire’, you probably have

enough ready-made chaos to contend

with!

In this case, your focus should be on running and improving post-incident

reviews to bring about system stability. Once you’ve had a few months free of

repeated production issues, try and run a small Chaos Day (in pre-production)

to further explore system stability.

24Ready for Chaos | Chaos Day Playbook

https://extfiles.etsy.com/DebriefingFacilitationGuide.pdf
https://extfiles.etsy.com/DebriefingFacilitationGuide.pdf

This section expands on our 5-minute guide to running a

Chaos Day with details including key outcomes, common

problems and experience reports, as well as a suggested

timeline for the end-to-end process.

26How | Chaos Day Playbook

27How | Chaos Day Playbook

Why and how to extract and
disseminate the knowledge gained,
as widely as possible across your

organisation.

How to run experiments, including
communication channels,

facilitation, documenting timelines
and restoring normal service.

Deciding who will be involved, what
experiments should be run, where to
run them, and when is the best time
to wreak havoc (or how to know when

isn’t the best time).

The process steps we’ll expand on are:

Whether you’re experimenting on a

single service or at scale on an entire

digital platform, planning your Chaos

Day carefully is essential to make the

most of your investment of time and

energy.

Whilst the process is the same regardless of scale, the organisa-

tional complexity, commitment and elapsed time increase with

the number of services and teams involved. Because of this, our

advice is to start small, so you can learn and adapt the process

to your particular situation. Start with one service or team , not

an entire engineering platform, then grow incrementally with

each subsequent Chaos Day.

The timeline below shows the end-to-end process. The sug-

gested elapsed time is based on our experience running Chaos

Days with a few teams. If you’re scaling up to five or more

teams, we’d recommend allowing 2-4 weeks for experiment

design; other durations can be kept about the same.

Timeline

28How | Chaos Day Playbook

https://digital-platform.playbook.ee/

H2

29How | Chaos Day Playbook

We used a regular, cross-team, community session to introduce chaos engi-

neering and talk about our experience of running Chaos Days in the public

sector. This created an appetite within teams to learn more. For the inaugural

Chaos Day, we had just one platform and one product team. It was a big suc-

cess and the teams learned many lessons about their own systems plus chaos

engineering itself. Participants shared these lessons with other teams using

their standard post-incident review process, followed by a presentation of key

outcomes at their next cross-team community session.

Starting small helped John Lewis & Partners learn and develop a repeatable,

scalable approach that they are now replicating out to many more teams.

John Lewis & Partners has 25 product teams, building 40 services on their

digital platform, which is built and run by two platform teams. There are around

100 microservices, internal and external components, and downstream de-

pendencies.

As Digital Platform Enablement Lead,

one of my goals was to help product

teams to deliver more resilient systems.

Running a Chaos Day is a great way to

foster an effective incident response,

so I brought Lyndsay in to guide us

through our first foray.

Using Chaos Days to improve the John Lewis & Partners Digital Platform

Steve Smith

Digital Platform Enablement Lead

Equal Experts, UK

Timeline

30How | Chaos Day Playbook

https://medium.com/john-lewis-software-engineering/team-nimbus-and-the-agents-of-chaos-ab257e41fe36
https://medium.com/john-lewis-software-engineering/team-nimbus-and-the-agents-of-chaos-ab257e41fe36
https://medium.com/john-lewis-software-engineering/our-award-winning-john-lewis-digital-platform-2d093e03d542
https://www.linkedin.com/in/stevesmithtech/

Once you have decided which service(s) to experiment on, you should identify

three groups of people:

Stakeholders are anyone connected with the service who would benefit

from the insights created by a Chaos Day. It’s not just the team’s engi-

neers who can gain new insights: designers, product owners and deliv-

ery managers all contribute to a system’s design, implementation and

operation and therefore also have a stake in its resilience. For example,

a designer and a product owner both need to be aware of how failures

ripple through a system and ultimately impact end-users.

Responders are whoever normally responds to service incidents. If

you’re practising the principle of You Build It, You Run It (YBIYRI - for

more on this, see our You Build It, You Run It playbook, by Steve Smith

and Bethan Timmins), then this will be the team that owns the service.

In other cases, it may be a support or operations team removed from the

engineering team. To maximise the realism and learning opportunities of a

Chaos Day, include responders as much as possible throughout the process.

Agents of chaos are the engineers who will be designing and running

the actual experiments. For a team’s first Chaos Day, these people

should be two or more of the most experienced engineers on the

team(s). If several teams are involved, then take the most experienced

engineer from each team. This has two benefits. Firstly, it uncovers

knowledge gaps within the team, because these engineers are non-con-

tactable during the Chaos Day itself. Secondly, the experiments they

design tend to reflect real-world failures more realistically, and explore

system failure modes less known to other engineers.

Common problems in identifying these groups are:

• Not all collaborators are identified (e.g. teams that own downstream

systems) and/or involved in the Chaos Day process - Nora Jones

describes this as Trap 2 of the 8 traps of Chaos Engineering. Although

it’s costly getting everyone involved in the various meetings, people

learn new things throughout the process, as different mental models are

discussed, experiments proposed, executed and reviewed.

• The team struggles to cope without their most experienced engineer. In

one Chaos Day we ran, the responding team had to drag their agent of

chaos back in, to resolve the failure they had induced. If you think this

might happen to your team, then consider making the experient design

and execution process open to the team, as described in the Experiment

Design and Execution sections.

Who to involve in a Chaos Day

1

2

3

31How | Chaos Day Playbook

https://you-build-it-you-run-it.playbook.ee/
https://medium.com/@njones_18523/chaos-engineering-traps-e3486c526059

It can be tempting to launch into

chaos engineering with the desire to

break things in diverse and spectacular

ways, and see what happens.

This approach is definitely chaotic and may generate new insights, but is not

the desired type of chaos and is likely to be a poor return on investment. To

avoid this pitfall, remind yourself and the team why you’re doing chaos engi-

neering: to improve system resilience through learning how the whole system

(product, process, people) responds to injected failures.

Improved resilience comes through learning, and learning comes in many

forms. For example, brainstorming experiments will help participants learn

about the focal product’s architecture and characteristics, and this learning

may get drawn upon in the next production incident, leading to reduced time

to recover (measured over time, the Mean Time To Recover, MTTR, is one of

the four key indicators of software delivery performance). Experiments should

therefore be identified, selected and designed to optimise for learning poten-

tial, instead of maximising inflicted damage, the number of remediation items

identified, or how time to recover. Experiment themes Experiments take many

forms and provide different types of lessons. Depending on the team’s context,

it can be useful to group the experiments around a particular theme, or just aim

for diversity. In running Chaos Days at various organisations we’ve seen the

following themes emerge:

What experiments to run on a Chaos Day

32How | Chaos Day Playbook

https://cloud.google.com/blog/products/devops-sre/using-the-four-keys-to-measure-your-devops-performance

Build confidence in the resilience

of a service and the people and

processes in place to operate it.

This theme can be used when a new

service or major architectural change

is being introduced, or ahead of an

upcoming peak event (e.g. Cyber-5

in the case of an online retailer). It

provides an indication to the owning

and ancillary teams (e.g. operations

or other support teams) and stake-

holders that a service is resilient,

appropriately understood and well

supported. This theme is particularly

useful for teams that have recently

inherited a service or are new to the

You Build It, You Run It model. To find

out more see our You Build It, You

Run It playbook, by Steve Smith and

Bethan Timmins.

Share knowledge and expertise

across the team - Use to help new

and existing team members fire-drill

incident response in a safer setting

than a real production-issue. This

theme builds architectural and do-

main knowledge, familiarity with in-

cident processes, observability tools

and service runbooks. This is particu-

larly useful to test recent improve-

ments to runbooks and/or telemetry

(logging, metrics, alerting).

Shape a resilience backlog - Use to

identify gaps in resilience mecha-

nisms, observability, runbooks or

team knowledge and to help priori-

tise what to invest in next.

Test out improvements to process

and team knowledge - If your team

has suffered one or more production

incidents that went badly and reme-

diations have been put in place, use

this theme to recreate similar failures

and discover what gaps still exist.

33How | Chaos Day Playbook

https://you-build-it-you-run-it.playbook.ee/
https://you-build-it-you-run-it.playbook.ee/

Unless you’re running a mini Chaos Event, schedule a planning session at least

two weeks before a Chaos Day. This allows time for the selected experiments

to be designed, implemented and tested ahead of Chaos Day.

Bring the participants together and run a brainstorming session, with the

above context in mind. Ask the team to sketch out the system architecture and

steady-state behaviour, such as typical traffic and expected error levels. A box-

es and arrows sketch is fine; you just need a high enough level that’s easy to

visualise and reason about, but low enough to identify components that might

fail. If the number of participants is small and time allows, have each person

draw their own sketch, then compare them one by one, starting with the sketch

done by the person least familiar with the system.

This activity can improve the

resilience of the system be-

cause it corrects misconcep-

tions within the team and

gives each member deeper

architectural and behavioural

understanding, which they can

draw on during the next pro-

duction incident.

Experiment brainstorm

What experiments to run on a Chaos Day

34How | Chaos Day Playbook

Before brainstorming about failures, decide what the scope of experiments

should be, considering:

Which parts of the system do you not have control over? Failures will

be out of scope if their remediations are outside your team’s control

(e.g. an internal failure within a cloud provider, such as an AWS network

outage).

Which components are off-limits for experimentation? If another team

has critical work in progress that requires component X to be highly

available on Chaos Day, it might be best to preserve team harmony by

declaring that component to be off-limits.

What is the desired blast radius? Failures in one component or whole

service will often impact connected components and downstream

services. Decide if there should be a constraint on how far failures are

allowed to ripple.

Is there a desired focus area or theme to orient experiments around?

Review the experiment themes and decide if Chaos Day will be a smor-

gasbord or a set menu of experiment types.

With a common architecture diagram and scope agreed upon and visible to

everyone, the next step is to brainstorm experiments. Ask each participant to

spend 5-10 minutes brainstorming 3-8 failures they’d like to learn more about,

writing each failure on a sticky note (or virtual equivalent) and placing it on the

architecture diagram near the target component/connection. For each failure,

they should consider the failure event (what, where, how), expected impact and

anticipated response.

At the end of the brainstorm, group similar ideas and discuss groups of par-

ticular interest (use dot-voting if necessary). Firm facilitation is required here,

as these discussions can easily get lost in detail. Keep the group focused on

reaching the point where they can agree on the top 4-8 experiments that opti-

mise for learning within the agreed scope and theme.

35How | Chaos Day Playbook

1

2

4

3

https://en.wikipedia.org/wiki/Dot-voting

If the failure really happened how

significant would the business and/or

reputational damage be? How would

this change over the course of the fail-

ure, until normal service is resumed?

The prioritisation process should be a discussion where the following attributes are

identified and compared for each experiment:

How likely is the failure? Has it hap-

pened before? What conditions would

have to be present for it to occur and

how likely are those conditions? Don’t

spend time on failures whose condi-

tions represent a much wider impact,

such as national or planet-scale

outages, but equally, don’t rule out

failures that seem unlikely. At one

client we used a highly available, cloud

database service, fully managed by a

leading public cloud provider. We had

absolute confidence it would never

fail, until one day a regular infrastruc-

ture-as-code deployment deleted the

database and its backups (ironically

due to cloud configuration changes

designed to increase resilience). Ques-

tion all assumptions!

36How | Chaos Day Playbook

Having shortlisted 4-8 experi-

ments, agree on an owner for

each experiment and set the

expectation that, before the

Chaos Day, the owners will

have fleshed out their exper-

iments to the point they are

confident in executing them.

The next section outlines a

template we’ve found useful in

guiding experiment design.

How do you expect the system and

team around it to respond when the

failure occurs (MTTR)? Will a circuit

breaker kick in and requests be later

retried? Will alerts fire? Will the team

quickly notice and know what to do?

How well understood is the failure

and the impacted architectural parts?

Complex systems that are hard to rea-

son about are also hard to support, es-

pecially when something goes wrong.

Resilient systems are built and op-

erated by teams. Failures that span

multiple teams require a cross-team

response. How well do the impacted

teams know each other? Do they have

established points of contact and com-

munication protocols?

37How | Chaos Day Playbook

https://martinfowler.com/bliki/CircuitBreaker.html
https://martinfowler.com/bliki/CircuitBreaker.html

We often use Trello as a collaboration tool for Chaos Days, with each card

representing a single experiment. Our template card uses the format:

Experiment design and preparation

What experiments to run on a Chaos Day?

HEADING EXAMPLE

Experiment title: <Component>
<Failure> <Expected result>

Third-party service Y being unavailable leads to our service X queuing and retrying requests.

What failure are you invoking? Response time for requests from service X to Y starts exceeding 10 seconds. Simulate by stopping service Y.

Expected impact This should have no visible client impact for N minutes, during which service X will queue and retry requests, whilst

giving clients an OK response. After N minutes the response will change to Service not available.

Expected response Queue and retry kicks in, then alerts fire if 10 Service not available responses occur within 60 seconds. The team’s sup-

port person will respond to the alert within 15 minutes and use the runbook to investigate connectivity to service Y.

Rollback steps Restart service Y.

Other experiments to run in parallel Intermittent failures in the Queuing platform.

38How | Chaos Day Playbook

https://trello.com/

Having designed the experiment, the next step is to determine its execution.

This requires consideration of:

How will the system be modified to simulate or cause the failure con-

dition? Will the engineer need to create a script or program to cause

the condition? Can this be programmed so the failure can be repeatedly

run? Consider if any third party or cloud-provided chaos engineering

tools might help.

Which environment will the experiment be run in?

What load does the system need to be under to trigger the failure and

make it observable?

For the host environment, how will the load occur? For example, if

the experiment is running in production, will steady-state production

load be sufficient, or does additional synthetic load need injecting? If a

pre-production environment is used, how would a production load be

simulated?

When the failure occurs in the given environment, will configured alerts

automatically fire at the error level generated by the induced load, or

will the alert threshold need temporarily adjusting?

When designing experiments, be

mindful of the probe effect (see also

Chaos Engineering p224); the means

of injecting the failure condition

might alter the system in such a way

to cause alternative or unrealistic

chaos, thus distorting the experiment.

1

4

5

2

3

39How | Chaos Day Playbook

https://www.gremlin.com/
https://aws.amazon.com/fis/
https://en.wikipedia.org/wiki/Probe_effect
https://www.oreilly.com/library/view/chaos-engineering/9781492043850/

• Opting for a single Chaos Day results in a more intensive but shorter

event, for both Agents of Chaos and those responding to the chaos.

While this approach adds stress, our experience is that the intensity

also improves team dynamics and leads to a more memorable event that

the team will talk about for years to come. On the downside, it can be

harder to maintain the element of surprise, especially if experiments are

being run in a pre-production environment. Teams need to be informed

to treat failures in this environment as though production were on fire,

and so it’s likely they’ll be paying close attention to that environment

during that time. Plus, once the first experiment is over, the team is

likely to realise Chaos Day is upon them!

• Spreading the chaos over a few days allows more of the team to be

involved in brainstorming experiments, but still maintains an element

of surprise because they won’t know exactly when experiments will be

run during the chosen period. It’s unlikely they will remain hypervigilant

for the whole of the period, so when failures do occur there will be an

element of surprise. Spreading the experiments out allows adjustments

to be made to each experiment over the period, because lessons from

earlier experiments can be used to improve the execution of later ones.

• If this is your first Chaos Day, we recommend starting small and learning

the ropes by just running a few experiments on a single day.

The next step is to fix a date for the experiments.

When to run a Chaos Day

To identify the best time to run your Chaos Day, you should first decide whether

the experiments should occur on a single day or be spread over a few days:

40How | Chaos Day Playbook

Once a date has been agreed, inform the participating teams and reiterate that:

Supporting teams should treat this as a regular day, and keep busy doing

regular work, not watching and waiting for the chaos to unfold.

If an issue is observed in the target environment during that period, it

should be treated as though it were a production issue. Agree on what

communication channel should be used for incident response, though,

as you may want to keep your production channel clear in case real pro-

duction incidents occur at the same time!

Finally, book a physical or virtual space so that the Agents of Chaos can col-

laborate more effectively on the experiments. They should also have their own

private communication channel (e.g. a Slack private channel), ideally set up as

soon as the group’s members have been identified.

This should be at least a couple of

weeks after the planning session to al-

low engineering time to design, imple-

ment and test the experiments.

Check if other teams have any key dependencies on the target environment

and services over the Chaos Day, to avoid impacting them should the failures

ripple out too far and for too long!

1

2

41How | Chaos Day Playbook

It doesn’t have to be production

Chaos Engineering was made famous by Netflix running their Chaos Monkey in

production. However, as Norah Jones writes in her excellent Chaos Engineering

Traps post, the Netflix team learned a lot about resilience just by automating

their experiments, before they were even run in production!

Because Chaos Engineering is highly contextual, what is right for one organi-

sation may not be appropriate for another. If your pre-production environment

is a close enough replica of production (e.g. same architecture, characteristics

and supporting structures, such as service configuration, deployment, telem-

etry, etc.) then running experiments in pre-production will provide valuable

lessons, without the costs and risks of targeting production.

Your production environment will always be the most realistic environment

to run experiments in, so always consider first how experiments could be run

there without impacting users or the business.

Various techniques make this possible, including:

Where to run a Chaos Day

1 Shadow running
production traffic
in isolated produc-
tion instances

Production requests are replicated as early

as possible and replicated traffic is directed

down a set of production service instances

that are reserved for experimentation.

2 Blue-green deploy-

ments or canary

releases

Experiments are deployed to a small per-

centage of your production estate, which re-

ceives a small amount of production traffic,

thus controlling the proportion of sessions

impacted if experiments get out of control.

3 Flying below the
error threshold
radar

(In combination with blue-green deploy-

ments) most complex environments have a

low-level, steady-state error rate. This allows

experiments to be safely run providing they

don’t elevate the error rate above an impact-

ful threshold. This requires close monitoring

of the steady-state error level and any delta

introduced by an experiment, plus the ability

to quickly disable an experiment before the

threshold is exceeded.

4 Friendly beta
users

If production traffic can be segregated by

user, and you have access to a set of users

willing to participate in experiments, then

beta user traffic could be directed to produc-

tion instances that are reserved for experi-

mentation.

42How | Chaos Day Playbook

https://www.gremlin.com/chaos-monkey/
https://www.gremlin.com/chaos-monkey/
https://medium.com/@njones_18523/chaos-engineering-traps-e3486c526059
https://medium.com/@njones_18523/chaos-engineering-traps-e3486c526059
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://martinfowler.com/bliki/BlueGreenDeployment.html
https://launchdarkly.com/blog/what-is-a-canary-release/
https://launchdarkly.com/blog/what-is-a-canary-release/

Environmental considerations

Some of the Chaos Days we have run have multiple pre-production environments to choose from, alongside the production environment.

When choosing which pre-production environment to use, consider:

1 Likeness to production How different to production is the environment’s architecture and configuration (e.g. instance size/compute

power), connectivity (e.g. which services are present and operational, which are stubbed or connected to external

dependencies), supporting structures such as deployment mechanisms, telemetry and alerting configuration? Even

if your pre-production is technically identical to production, there may still be differences in how teams interact

or treat that environment. For example, alerts may not follow the same process as for Production, alerts may be

ignored in pre-production environments due to existing high signal-to-noise.

2 Load generation Failures are only observable when triggered by a stimulus, normally in the form of simulated user traffic. Environ-

ments that already have load tests running against them can often be easier to experiment on.

3 Telemetry Because pre-production environments normally receive less traffic than production, and are often used for test-

ing, their logging, monitoring and alerting services may require configuration changes (e.g. turn on alerts, set error

threshold lower) before (and after) Chaos Day in order for failures to show up during the event.

4 Business impact What is the impact on other teams that use this environment? Do they need it to be fully functional in order to de-

liver a time-critical capability? If experiments get out of control and cause more chaos than intended, how quickly

could normal service be resumed?

5 Communication channels How do teams normally collaborate when an issue occurs in production? Is there a similar setup for the pre-pro-

duction environment? Aim to standardise as much as possible across environments, so that Chaos Day participants

strengthen their muscle memory for how to respond during a real production incident.

43How | Chaos Day Playbook

As with any team activity, having a single person be the nominated facilitator/

lead will make the Chaos Day or Week run more smoothly. Ideally, this should

be someone who has been involved in the meetings leading up to this point,

but not one of the Agents of Chaos as they’ll likely focus on individual experi-

ments.

How a Chaos Day unfolds

At the start of the Chaos Day / Week, the facilitator should remind all

participants:

• Which environment is being targeted

• To treat failures observed in that environment as though Production was

on fire (e.g. use standard incident response procedures)

• Which communication channel to use to report and collaborate on

failures (we recommend using whatever channel you normally use for

issues in a given environment).

Once the Agents of Chaos start running the experiments, the facilitator

should help them - see next page.

44How | Chaos Day Playbook

45How | Chaos Day Playbook

Insights that help improve resilience

are generated at every step of a Chaos

Day, from sketching the system archi-

tecture at the beginning to responding

to simulated failures on the day itself.

As with real production incidents, further lessons can be extracted by holding

post-mortem style retrospectives after the event, to analyse what happened.

Some great resources on running incident reviews include:

• Etsy’s facilitation guide

• Google’s SRE handbook

• Jeli.io’s incident review guide

If several teams were involved in the Chaos Day, ask each team to run their

own Chaos retrospective, then feed their top insights into a team-of-teams

retrospective.

Chaos retrospective format

Supporting a production service is a team sport, so ideally involve the whole

team in the Chaos retrospective, not just the Agents of Chaos and responders.

Split the time into sections, or even separate meetings, focusing on:

Learning from a Chaos Day

Use your standard incident

review process, remembering to

focus on surfacing new knowl-

edge about system behaviour

rather than generating a long

list of improvement tasks. If

ideas for improvement do come

up, note them and assign an

owner to review them later

(see item 3). Don’t get drawn

into solutionising, because

that needs a separate thinking

space, and will take valuable

time away from documenting

what was learnt.

46How | Chaos Day Playbook

https://extfiles.etsy.com/DebriefingFacilitationGuide.pdf
https://sre.google/sre-book/postmortem-culture/
https://www.jeli.io/blog/what-is-incident-analysis-and-why-should-we-do-it/

Sharing the knowledge

Chaos Days surface a lot of knowledge that can help teams improve service

resilience. To get further benefit, share this knowledge across the organisation,

making it easy for other teams to find and consume. Consider writing publically

about what you’ve done and learnt - chaos engineering is still in its infancy in

the software engineering discipline and making experience reports public will

help this important practice mature.

What improvement consider-

ations/ideas should progress

onto a team’s backlog?

Spend the last 10 minutes of

the meeting on this, noting

down for future reference what

changes would make the next

Chaos Day even more

successful.

47How | Chaos Day Playbook

49What next | Chaos Day Playbook

We hope this playbook has been useful to you

and inspired you to take the next step in your

Chaos Engineering journey.

Depending on your context, you might:

Focus on improving how
you respond to and learn
from production incidents

(free Chaos Days!)

Run a Chaos Day for a
single team.

Run some Chaos
experiments for the next
architectural change you

introduce.

Run a Chaos Day for
multiple teams.

50What next | Chaos Day Playbook

Contributors How to contribute

This playbook is produced through the efforts of a number of people, all of

whom have generously shared their experience for the benefit of others.

Guides like this are never complete. There will always be improvements we

can make and as more teams use these practices in a wider variety of contexts

- some of which we may not have envisioned. To help ensure this playbook

remains relevant and useful, we welcome contributions from anyone in the

wider software engineering community. Please see the contribution guidelines

on the right if you’re interested in helping out.

This playbook was produced by a number of people within the Equal Experts

network, including:

Adam Hansrod

Alun Coppack

Dave Hewett

Isabell Britsch

As with any open source effort, there are numerous different ways you

can contribute. From fixing a typo to suggesting entirely new content, all

suggestions are welcome. If you’d like to contribute, please follow these

guidelines:

• If you’re fixing something without changing the meaning (e.g. fixing a

broken link or a typo), please submit a PR.

• If you’d like to suggest a change in content (e.g. adding a new section, or

changing the meaning of existing text), please raise an Issue where we

can discuss your proposal. Please do not submit a PR until the changes

have been agreed.

Kulvinder Singh

Steve Smith

Stuart Gunter

Contributions and license | Chaos Day Playbook 51

https://www.linkedin.com/in/adam-hansrod-22940876/
https://www.linkedin.com/in/aluncoppack/
https://www.linkedin.com/in/dave-hewett-b97609/
https://www.linkedin.com/in/isabell-britsch/
https://github.com/EqualExperts/chaos-day-playbook/pulls
https://github.com/EqualExperts/chaos-day-playbook/issues
https://www.linkedin.com/in/kulvinder-singh-86358a/
https://www.linkedin.com/in/stevesmithtech/
https://www.linkedin.com/in/stuartgunter/

At Equal Experts we are always

happy to have a no-strings-attached

conversation about how you can get

started in this exciting and beneficial

area, so please get in touch!

52Contributions and license | Chaos Day Playbook

https://www.equalexperts.com/contact-us/

License

No additional restrictions — You may not apply legal terms or technological

measures that legally restrict others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material

in the public domain or where your use is permitted by an applicable

exception or limitation.

• No warranties are given. The license may not give you all of the

permissions necessary for your intended use. For example, other rights

such as publicity, privacy, or moral rights may limit how you use the

material.

You are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license

terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the

license, and indicate if changes were made. You may do so in any

reasonable manner, but not in any way that suggests the licensor

endorses you or your use.

• NonCommercial — You may not use the material for commercial

purposes.

• ShareAlike — If you remix, transform, or build upon the material, you

must distribute your contributions under the same license as the

original.

This is a human-readable summary of (and not

a substitute for) the license. Disclaimer.

Contributions and license | Chaos Day Playbook 53

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/3.0/

