
MLOps
Playbook

Paul Brabban, Jon Carney, Simon Case,

Scott Cutts, Claudio Diniz, Bas Geerdink, Thorben Louw,

Jennifer Stark, Rajesh Thiagarajan

EQUALEXPERTS.COM/PLAYBOOKS/MLOPS

https://playbooks.equalexperts.com/mlops-playbook

01Introduction 02Key terms 03What is MLOps

04Principles 05Practices 06 07Explore Pitfalls

8 Solid data foundations

10 Provide an environment that allows data

scientists to create and test models

12 A machine learning service is a product

13 Apply continuous delivery

13 Evaluate and monitor algorithms

throughout their lifecycle

14 Operationalising ML is a team effort

18 Collect performance data of the algorithm

in production

19 Ways of deploying your model

23 How often do you deploy a model?

25 Keep a versioned model repository

25 Measure and proactively evaluate quality

of training data

27 Testing through the ML pipeline

29 Business impact is more than just

accuracy

31 Regularly monitor your model in

production

33 Monitor data quality

34 Automate the model lifecycle

36 Create a walking skeleton/steel thread

38 Appropriately optimise models for

inference

42 Feature stores

6 Overview5 Overview3 Overview

44 User Trust and Engagement

47 Explainability

49 Avoid notebooks in production

52 Poor security practices

53 Don’t treat accuracy as the only or even

the best way to evaluate your algorithm

53 Use machine learning judiciously

54 Don’t forget to understand the at-

inference usage profile

54 Don’t make it difficult for data scientists

to access data or use the tools they need

55 Not taking into consideration the

downstream application of the model

3

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

Introduction

Machine learning, and by extension a lot of artificial

intelligence, has grown from a niche idea to a tool

that is being applied in multiple areas and industries.

At EE we have been involved in developing and deploying machine learning for a number of appli-

cations, including to:

• Assess cyber-risk

• Evaluate financial risk

• Improve search and recommendations in retail web sites

• Price used vehicles

• Improve logistics and supply chains

An ML solution depends on both the algorithm - which is code - and the data used to develop and train that

algorithm. For this reason, developing and operating solutions that use ML components is different to standard

software development.

Introduction | MLOps Playbook

4

This playbook brings together our experiences working with algorithm developers to make ma-

chine learning a normal part of operations. It won’t cover the algorithm development itself - that

is the work of the data scientists. Instead it covers what you need to consider when providing the

architecture, tools and infrastructure to support their work and integrate their outputs into the

business.

It is a common mistake to focus on algorithms - after all they are very clever, require deep

expertise and insight and in some cases seem to perform miracles. But in our experience,

obtaining business value from algorithms requires engineering to support the algorithm de-

velopment part of the process alongside integrating the machine learning solution into your

daily operations. To unlock this value you need to:

• Collect the data that drives machine learning and make it available to the data

scientists who develop machine learning algorithms

• Integrate these algorithms into your everyday business

• Configuration control, deploy and monitor the deployed algorithms

• Create fast feedback loops to algorithm developers

As with all of our playbooks we have written this

guide in the spirit of providing helpful advice to

fellow developers creating ML solutions. If you are

starting on the ML journey we hope you are not

daunted by all the things covered in this playbook.

Starting small and being lean in your implementation

choices at the start is perfectly fine and will probably

help you to iterate quicker.

Introduction | MLOps Playbook

5Key terms | MLOps Playbook

Key terms

Machine learning (ML) - a subset of AI that involves training algorithms with data rather than developing hand-craft-

ed algorithms. A machine learning solution uses a data set to train an algorithm, typically training a classifier that

says what type of thing this data is (e.g. this picture is of a dog); a regressor, which estimates a value (e.g. the price

of this house is £400,000.) or an unsupervised model,such as generative models like GPT-3, which can be used to

generate novel text). Confusingly, when data scientists talk about regression it means something completely differ-

ent than is meant when software engineers use the same terminology.

Model - in machine learning a model is the result of training an algorithm with data, which maps a defined set of

inputs to outputs. This is different from the standard software use of the term ‘data model’ - which is a definition

of the data entities, fields, relationships etc for a given domain, which is used to define database structures among

other things.

Algorithm - we use this term more or less interchangeably with model. (There are some subtle differences, but

they’re not important and using the term ‘algorithm’ prevents confusion with the other kind of data models).

Ground-truth data - a machine-learning solution usually needs a data set that contains the input data (e.g. pictures)

along with the associated answers (e.g. this picture is of a dog, this one is of a cat) - this is the ‘ground-truth.’

Labelled data - means the same as ground-truth data.

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

6

What is MLOps?

What is MLOps | MLOps Playbook

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

Operationalising Machine Learning is a dual track process:

Data Scientists work on historical data to create algorithms

ML engineering teams integrate the model into operational systems and data flows

1

2

To create and use a machine learning algorithm you will typically go

through the following steps:

Initial development of algorithm

The first step in applying a machine learning solution to your business is to

develop the model. Typically, data scientists understand what the need is, then

identify or create ground-truthed data sets and explore the data. They proto-

type different machine learning approaches and evaluate against hold-out data

sets (the test sets) to gain an understanding of the performance of the algorithm

against unseen data.

Integrate / deploy model

Once a model has been selected and shown to meet the required performance

criteria, it needs to be integrated into the business. There are a variety of meth-

ods of integration and the right option will depend on the consuming services.

In modern architecture, for example, the model is likely to be implemented as a

standalone microservice.

The environment in which data scientists create the model is not the one in

which you want to deploy it, so you need to have a mechanism for deploying it -

copying an approved version of the algorithm into the operational environment.

Monitor performance

The model needs to be monitored when in operation. As well as monitoring the

same things you would do for any piece of software - that it is running, that it

scales to meet demand etc., you will also want to monitor what accuracy it is

providing when deployed in practice.

Update model

In most cases the model will be retrained on a regular basis - in which case the

different iterations of the model need to be version controlled and downstream

services directed towards the latest version. Better performing versions of the

model will become available as a result of new data or more development effort

on the model itself, and you will want to deploy these into production. Model

updates are usually the result of two different sorts of changes:

• Retrain on new data - in most cases the business collects more ground-

truthed data that can be used to retrain the model and improve its

accuracy. In this case no new data sources are needed and there is no

change to the interfaces between the model and its data sources and no

change to the interface with operational systems.

• Algorithm change - sometimes new data sources become available which

improve the performance of the algorithm. In this case the interfaces to

the model will change and new data pipelines need to be implemented.

Sometimes, additional outputs are required from the model, and the

interface to downstream operational systems is altered.

1 3

4

2

7What is MLOps | MLOps Playbook

8Principles | MLOps Playbook

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

Principles

The below diagram shows the two processes involved in building machine learning

systems and the data they need to access:

• An evaluation process that makes predictions (model scoring). This may be real-

time.

• A batch process that retrains the model, based on fresh historical data.

Solid data foundations

Have a store of good quality, ground-truth

(labelled) historical data that is accessible

by your data scientists

A machine learning solution is fundamentally dependent on the data used to train it.

To maintain and operate an ML solution, the data used to develop the model/algorithm

must be available to the maintainers. They will need the data to monitor performance,

validate continued performance and find improvements. Furthermore, in many cases

the algorithm is modelling an external world that is undergoing change, and they will

want to update or retrain the model to reflect these changes, so will need data updates.

The data needs to be accessible by data science teams and it will also need to be made

available to automated processes that have been set-up for retraining the model.

In most applications of ML, ground-truth data will need to be captured alongside the

input data and it is essential to capture these data points as well.

It is common to create data warehouses, data lakes or data lakehouses and associated

data pipelines to store this data.

Our data pipelines playbook covers our approach to providing this data.

Principles | MLOps Playbook 9

https://playbooks.equalexperts.com/data-pipeline

Developing a machine learning model is a creative, experimental process. The data

scientists need to explore the data and understand the features/fields in the data. They

may choose to do some feature engineering - processing on those fields - perhaps

creating aggregations such as averages over time, or combining different fields in ways

that they believe will create a more powerful algorithm. At the same time they will be

considering what the right algorithmic approach should be - selecting from their toolkit

of classifiers, regressors, unsupervised approaches etc. and trying out different combi-

nations of features and algorithms against the datasets they have been provided with.

They need a set of tools to explore the data, create the models and then evaluate their

performance.

Provide an environment that allows data

scientists to create and test models

Principles | MLOps Playbook 10

Some of the approaches we have successfully used are:

• Development on a local machine with an IDE or notebook.

• Development on a local machine , deployment and test on a local container and

run in a cloud environment.

• Using cloud first solutions such as AWS Sagemaker or GCP Collab.

• Using dashboarding tools such as Streamlit and Dash to prototype and share

models with end users.

Local development using an IDE may

lead to better structured code than with

a notebook, but make sure that the data

is adequately protected (data with PII

should not be handled in this way), and

that the dependencies needed to run the

model are understood and captured.

Taking a container approach eases the

promotion of a development model

to production and often reduces turn-

around times across the full model

lifecycle.

Ideally, this environment should:

• Provide access to required historical data sources (e.g. through a data warehouse

or similar).

• Provide tools such as notebooks to view and process the data.

• Allow them to add additional data sources of their own choosing (e.g. in the

form of csv files).

• Allow them to utilise their own tooling where possible e.g. non-standard python

libraries.

• Make collaboration with other data scientists easy e.g. provide shared storage or

feature stores.

• Have scalable resources depending on the size of the job (e.g. in AWS Sagemaker

you can quickly specify a small instance or large GPU instance for deep learning).

• Be able to surface the model for early feedback from users before full

productionisation.

Principles | MLOps Playbook 11

We believe that an ML service should be developed and treated as a product, meaning

that you should apply the same behaviours and standards as you would when develop-

ing any other software product.

These behaviours include:

• Identify, profile and maintain an active relationship with the end-users of

your ML service. Work with your users to identify requirements that feed into

your development backlog, involve your users in validation of features and

improvements, notify them of updates and outages, and in general, work to keep

your users happy.

• Maintain a roadmap of features and improvements. Continue to improve your

service throughout its lifetime.

• Provide good user documentation.

• Actively test your service.

• Capture the iterations of your service as versions and help users migrate to

newer versions. Clearly define how long you will support versions of your

service, and whether you will run old and new versions concurrently.

• Understand how you will retire your service, or support users if you choose not

to actively maintain it any longer.

 A machine learning service is a product

• Have an operability strategy for your service. Build in telemetry that is exposed

through monitoring and alerting tools, so you know when things go wrong. Use

this data to gain an understanding of how your users actually use your service.

• Define who is supporting your service and provide runbooks that help support

recovery from outages.

• Provide a mechanism for users to submit bugs and unexpected results, and work

toward providing fixes for these in future releases.

Principles | MLOps Playbook 12

Apply continuous delivery

Machine learning solutions are complex

software and should use best practice

Evaluate and monitor algorithms

throughout their lifecycle

We want to be able to amend how our machine learning models consume data and

integrate with other business systems in an agile fashion as the data environment,

downstream IT services and needs of the business change. Just like any piece of work-

ing software, continuous delivery practices should be adopted in machine learning to

enable regular updates of those integrations in production. Teams should adopt typical

continuous delivery techniques, use Continuous Integration and Deployment (CI/CD)

approaches; utilise Infrastructure as Code (Terraform, ansible, packer, etc.) and work in

small batches to have fast and reasonable feedback, which is key to keeping a continu-

ous improvement mindset.

ML solutions are different from standard software delivery because we want to know

that the algorithm is performing as expected, as well as all the things we monitor to

ensure the software is working correctly. In machine learning, performance is inherent-

ly tied to the accuracy of the model. Which measure of accuracy is the right one is a

non-trivial question - which we won’t go into here except to say that usually the Data

Scientists define an appropriate performance measure.

This performance of the algorithm should be evaluated throughout its lifecycle:

• During the development of the model - it is an inherent part of initial algorithm

development to measure how well different approaches work, as well as settling

on the right way to measure the performance.

• At initial release - when the model has reached an acceptable level of

performance, this should be recorded as a baseline and it can be released into

production.

• In production - the algorithm performance should be monitored throughout the

lifetime to detect if it has started performing badly as a result of data drift or

concept drift.

Principles | MLOps Playbook 13

MLOps is a team effort

Turning a model from a prototype to an integrated part of the business requires a

cross-functional team working closely together.

You will need:

• Platform/Machine Learning engineer(s) to provide the environment to host the

model.

• Data engineers to create the production data pipelines to retrain the model.

• Data scientists to create and amend the model.

• Software engineers to integrate the model into business systems (e.g. a webpage

calling a model hosted as a microservice)

MLOps is easier if everyone has an idea of the concerns of the others. Data Scientists

are typically strong at mathematics and statistics, and may not have strong software

development skills. They are focused on algorithm performance and accuracy metrics.

The various engineering disciplines are more concerned about testing, configuration

control, logging, modularisation and paths to production (to name a few).

It is helpful if the engineers can provide clear ways of working to the data scientist

early in the project. It will make it easier for the data scientists to deliver their models

to them. How do they want the model/algorithm code delivered (probably not as a

notebook)? What coding standards should they adhere to? How do you want them to

log? What tests do you expect? Create a simple document and spend a session taking

them through the development process that you have chosen. Engineers should recog-

nise that the most pressing concern for data scientists is prototyping, experimentation

and algorithm performance evaluation.

When the team forms, recognise that it is one team and organise yourself accordingly.

Backlogs and stand-ups should be owned by and include the whole team.

Principles | MLOps Playbook 14

I started as a data scientist but quickly realised that if I wanted my work to be used I would

need to take more interest in how models are deployed and used in production, which has

led me to move into data engineering and ML Operations, and now this has become my

passion! There are many things that I have learned during this transition.

In general, models are developed by data scientists. They have the maths and stats skills

to understand the data and figure out which algorithms to use, whilst the data engineers

deploy the models. New features can get added by either of these groups.

In my experience, data scientists usually need to improve their software development prac-

tices. They need to become familiar with the separation of environments (e.g. development,

staging, production) and how code is promoted between these environments. I’m not saying

they should become devops experts, but algorithms are software and if the code is bad or if

it can’t be understood then it can’t be deployed or improved. Try to get your code out of the

notebook early, and don’t wait for perfection before thinking about deployment. The more

you delay moving into production, the more you end up with a bunch of notebooks that you

don’t understand. Right now I’m working with a great data scientist and she follows the best

practice of developing the code in Jupyter Notebooks, and then extracts the key functionali-

ty into libraries which can be easily deployed.

For data engineers - find time to pair with data scientists and share best dev practices with

them. Recognise that data science code is weird in many respects - lots of stuff is done with

Data Frames or similar structures, and will look strange compared to traditional application

programming. It will probably be an easier experience working with the data scientists if

you understand that they will be familiar with the latest libraries and papers in Machine

Learning, but not with the latest software dev practices. They should look to you to provide

guidance on this - try to provide it in a way that recognises their expertise!

15Principles | MLOps Playbook 15Principles | MLOps Playbook

Experience report

Matteo Guzzo

Data specialist

Equal Experts, EU

Principles | MLOps Playbook

Experience report

Adam Fletcher

Data scientist

Equal Experts, UK

As the lead data scientist in a recent project, my role was to create an algorithm to estimate

prices for used vehicles. There was an intense initial period where I had to understand the

raw data, prototype the data pipelines and then create and evaluate different algorithms for

pricing. It was a really intense time and my focus was very much on data cleaning, explora-

tion and maths for the models.

We worked as a cross-functional team with a data engineer, UX designer and two user inter-

face developers. Wehad shared stand-ups; and the data engineering, machine learning and

user experience were worked on in parallel.

I worked closely with our data engineer to develop the best way to deploy the ETL and model

training scripts as data pipelines and APIs. He also created a great CI/CD environment and

set up the formal ways of working in this environment, including how code changes in git

should be handled and other coding practices to adopt. He paired with me on some of the

initial deployments so I got up to speed quickly in creating production-ready code. As a data

scientist I know there are 100 different ways someone can set up the build process - and I

honestly don’t have any opinion on which is the right way. I care about the performance of

my model! I really appreciated working together on it - that initial pairing meant that we

were able to bring all our work together very quickly and has supported the iteration of the

tool since then.

16Principles | MLOps Playbook

17

Practices

Practices | MLOps Playbook

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

Human in the loop - this is the simplest technique of model performance evalua-

tion,but requires the most manual effort. We save the predictions that are made

in production. Part of these predictions are classified by hand and then model

predictions are compared with the human predictions.

In some use-cases (e.g. fraud) machine-learning acts as a recommender to a final

decision made by a human. The data from their final decisions can be collected

and analysed for acceptance of algorithm recommendations.

Periodic Sampling - if there is no collection of ground-truth in the system then

you may have to resort to collection of samples and hand-labelling to evaluate

the performance in a batch process.

Deciding on the right way to evaluate the performance of an algorithm can be difficult.

It will, of course, depend on the purpose of the algorithm. Accuracy is an important

measure but will not be the only or even the main assessment of performance. And

even deciding how you measure accuracy can be difficult.

Furthermore, because accurate measures of performance require ground-truth data it is

often difficult to get useful performance measures from models in production - but you

should still try.

Some successful means of collecting the data that we have seen are:

A/B testing - In A/B testing you test different variations of a model and compare

how the variations perform, or you compare how a model performs against the

absence of a model, like the statistical Null Hypothesis testing. To make effective

comparisons between two groups, you’ll need to orchestrate how it will happen

with the production models, because the usage of models is split. For example,

if the models are deployed in APIs, the traffic for the models can be routed 50%.

If your performance metric is tied to existing statistics (e.g. conversion rates in

e-commerce) then you can use A/B or multivariant testing.

Collect performance data of the algorithm

in production and make it accessible to

your data scientists

Practices | MLOps Playbook 18

Ways of deploying your model

Deploy model together with your application

(Python, MLlib)

Deploy model as SQL stored procedure

Shared service: host your model in a dedicated

tool, possibly automated

Microservices: API-ify your model (Pickle, Joblib)

Streaming: load your model in memory (PMML, ONNX)

Many cloud providers and ML tools provide solutions for model deployment that

integrate closely with their machine learning and data environments. These can greatly

speed up deployment and ease infrastructure overhead such as:

• GCP Vertex AI

• AWS Sagemaker

• MLFlow

Practices | MLOps Playbook 19

WHY HOW WATCH OUT

AS A MICRO-

SERVICE

Your model is intended to provide output for a

real time synchronous request from a user or

system.

The model artefact and accompanying code to generate

features and return results is packaged up as a contain-

erised microservice.

The model and microservice code should always be packaged together

- this avoids potential schema or feature generation errors and simpli-

fies versioning and deployment.

Your model and feature generation code will need to be performant in

order to respond in real time and not cause downstream timeouts.

It will need to handle a wide range of possible inputs from users.

EMBEDDED

MODELS

Your model is intended to directly surface its

result for further usage in the context it is em-

bedded e.g. in an application for viewing.

The model artefact is packaged up as part of the overall

artefact for the application it is contained within, and

deployed when the application is deployed.

The latest version of the model should be pulled in at application build

time, and covered with automated unit, integration and end-to-end

tests.

Realtime performance of the model will directly affect application

response times or other latencies.

AS A SQL

STORED

PROCEDURE

The model output is best consumed as an addi-

tional column in a database table.

The model has large amounts of data as an input

(e.g. multi-dimensional time-series).

The model code is written as a stored procedure (in

SQL, Java, Python, Scala etc. dependent on the data-

base) and scheduled or triggered on some event (e.g.

after a data ingest).

Modern data warehouses such as Google BigQueryML

or AWS RedShift ML can train and run ML models as a

table-style abstraction.

Stored procedures not properly configuration controlled.

Lack of test coverage of the stored procedures.

AS PART OF

BATCH DATA

PIPELINE

Your model is intended to provide a set of batch

predictions or outputs against a batched data

ingest or a fixed historical dataset.

The model artefact is called as part of a data pipeline

and writes the results out to a static dataset. The arte-

fact will be packaged up with other data pipeline code

and called as a processing step via an orchestration tool.

See our data pipeline playbook for more details.

Feature generation can be rich and powerful across historical data

points

Given the lack of direct user input, the model can rely on clean, nor-

malised data for feature generation.

Parallelisation code for model execution may have to be written to

handle large datasets.

AS PART OF

A STREAM-

ING DATA

PIPELINE

Your model is used in near-real-time data

processing applications, for example in a system

that makes product recommendations on a web-

site while the users are browsing through it.

The model artefact is served in memory in the streaming

processing framework, but using an intermediate format

such as ONNX or PMML. The artefact is deployed while

the stream keeps on running, by doing rolling updates.

Performance and low latency are key. Models should be developed

with this in mind; it would be good practice to keep the number of

features low and reduce the size of the model.

Once a machine learning model has been generated, that code needs to be deployed for usage. How this is done depends on your use case and your IT environment.

Practices | MLOps Playbook 20

Katharina Rasch

Data engineer

Equal Experts, EU

I worked on a model that was used to forecast aspects of a complex logistics system. The

input data was a large number (many thousands) of time-series and we needed to create

regular forecasts going into the future for some time, so that downstream users could plan

their operations and staffing appropriately. There was a lot of data involved at very high

granularity, so it was a complex and time-consuming calculation. However, there was no

real-time need and forecast generation once a week was more than enough to meet the

business needs.

In this context the right approach was to use a batch-process in which forecasts were gen-

erated for all parts of the logistics chain that needed them. These were produced as a set of

tables in Google BiqQuery. I really liked this method of sharing the outputs because it gave a

clean interface for downstream use.

One of the challenges in this work was the lack of downstream performance measures. It

was very hard to get KPIs in a timely manner. Initially we measured standard precision errors

on historical data to evaluate the algorithm and later we were able to augment this with A/B

testing by splitting the logistics network into two parts.

21

Experience report

Practices | MLOps Playbook

Coming up with a good model for your data once is hard enough, but in practice, you

will need to retrain and deploy updates to your model – perhaps regularly! These are

necessary because:

• the data used to train your model changes in nature over time,

• you discover better models as part of your development process, or

• because you need to adapt your ML models to changing regulatory requirements

Two useful phrases help to describe the way data changes are

Data drift describes the way data changes over time (e.g. the structure of incoming

data involves new fields, or changes in the previous range of values you originally

trained against) perhaps because new products have been added or upstream systems

stop populating a specific field.

Concept drift means that the statistical nature of the target variables being predicted

might change over time. You can think of examples such as an ML-enhanced search

service needing to return very different results for “chocolates” at Valentine’s day ver-

susEaster, or a system that recognises that users’ fashions and tastes change over time,

so the best items to return won’t be the same from season to season. Processes that

involve human nature are likely to result in concept drift.

Measure drift over time to understand when a model’s accuracy is no longer good

enough and needs to be retrained.

It’s also good practice to regularly redeploy your

model, even if you haven’t improved it or noticed

changes in data characteristics! This allows you to

make use of new framework versions and hard-

ware, to address security vulnerabilities through

updates to components, and to be sure that when

you need to deploy a fresh model, you know that

your deployment processes work.

How often do you deploy a model?

Practices | MLOps Playbook 22

Uttam Kini

Principal consultant

Equal Experts, India

In one engagement with a client who was a leader in the travel industry, we had used data

from the past five years to build a prediction model of repurchase behaviour. The model had

good accuracy and was running well in production.

Travel behaviours exhibited sudden and drastic change from March 2020, when the whole

world reacted to the rapid spread of “SARS-Cov-2” by closing borders. The data that the

model had been trained on had absolutely no pattern of what was happening in real life.

We realised that continuing to use the model output would not be useful.

The team changed the model to factor in the border closures to effect on the predictions.

We also incorporated a signal analyser into the model, which constantly monitored incoming

data for a return to normalcy. It was changed to identify data patterns which matched the

pre-covid historical data so that the model can switch off the dependency on specific Cov-

id-related external data, when conditions return to normal.

23

Experience report

Practices | MLOps Playbook

In some cases you will want the ability to know why a decision was made, for example,

if there is an unexpected output or someone challenges a recommendation. Indeed, in

most regulated environments it is essential to be able to show how a given decision

or recommendation was reached, so you know which version of your machine learning

model was live when a specific decision was made. To meet this need you will need a

store or repository of the models that you can query to find the version of the model in

use at a given date and time.

In the past we have used a variety of ways to version our models:

• S3 buckets with versioning enabled

• S3 buckets with database to to store model metadata

• MLflow model registry

• DVC to version both the model and the data used to create that model

• Cloud provider model registries (AWS Sagemaker, Google Vertex AI , Azure

MLOps)

• Some models can have their coefficients stored as text, which is versioned in Git

ML models are only as good as the data they’re trained on. In fact, the quality (and

quantity) of training data is often a much bigger determiner of your ML project’s suc-

cess than the sophistication of the model chosen. Or to put it another way: sometimes

it pays much more to go and get better training data to use with simple models than to

spend time finding better models that only use the data you have.

To do this deliberately and intentionally, you should be constantly evaluating the quali-

ty of training data.

You should try to:

• Identify and address class imbalance (i.e. find ‘categories’ that are

underrepresented).

• Actively create more training data if you need it (buy it, crowdsource it, use

techniques like image augmentation to derive more samples from the data you

already have).

• Identify statistical properties of variables in your data, and correlations between

variables, to be able to identify outliers and any training samples that seem

wrong.

Keep a versioned model repository Measure and proactively evaluate

quality of training data

Practices | MLOps Playbook 24

• Have processes (even manual random inspection!) that check for bad or

mislabelled training samples. Visual inspection of samples by humans is a good

simple technique for visual and audio data.

• Verify that distributions of variables in your training data accurately reflect real

life. Depending on the nature of your modelling, it’s also useful to understand

when parts of your models rely on assumptions or beliefs (“priors”), for example

the assumption that some variable has a certain statistical distribution. Test

these beliefs against reality regularly, because reality changes!

• Find classes of input that your model does badly on (and whose poor

performance might be hidden by good overall “evaluation scores” that consider

the whole of the test set). Try to supplement your training data with more

samples from these categories to help improve performance.

• Ideally, you should also be able to benchmark performance against your dataset

rather than aim for getting metrics ‘as high as possible’. What is a reasonable

expectation for accuracy at human level, or expert level? If human experts can

only achieve 70% accuracy against the data you have, developing a model that

achieves 75% accuracy is a terrific result! Having quantitative benchmarks

against your data can allow you to know when to stop trying to find better

models, and when to start shipping your product.

Practices | MLOps Playbook 25

As with any continuous delivery development, an ML pipeline needs to be testable and

tested. An ML pipeline is a complex mixture of software (including complex mathemat-

ical procedures), infrastructure, and data storage and we want to be able to rapidly test

any changes we make before promoting to production.

We have found the following test types to be valuable:

• Contract testing - if the model is deployed as a microservice endpoint, then we

should apply standard validations of outputs to inputs.

• Unit testing - many key functions such as data transformations, or mathematical

functions within the ML model are stateless and can be easily covered by unit-

tests.

• Infrastructure tests - e.g. Flask/FastAPI models start and shutdown.

• ‘ML smoke test’ - we have found it useful to test deployed models against a

small set of known results. This can flush out a wide range of problems that may

occur. We don’t recommend a large number - around five is usually right. For

some types of model e.g. regression models the result will change every time the

model is trained so the test should check the result is within bounds rather than

a precise result.

In addition to the tests above, which are typical for any complex piece of software,

the performance of the model itself is critical to any machine learning solution. Model

performance testing is undertaken by data scientists on an ad-hoc basis throughout the

initial prototyping phase. Before a new model is released you should validate that the

new model performs at least as well as the existing one. Test the new model against a

known data set and performance compared to a specified threshold or against previous

versions.

We don’t usually do load testing on our models as part of the CI/CD process. In a

modern architecture load is typically handled by auto-scaling so we usually monitor and

alert rather than test. In some use cases, such as in retail where there are days of peak

demand (e.g. Black Friday), load testing takes place as part of the overall system testing.

Testing through the ML pipeline

Practices | MLOps Playbook 26

I also created functional tests - smoke tests which tested that an endpoint deployed and

that the model responded in the right way to queries, without measuring the quality of

the recommendations. Our algorithms were deployed within an A/B/multi-variant testing

environment so we have an understanding that we are using the best performant algorithm

at least.

We found that the Vertex AI auto-scaling was not as performant as we had hoped - and

noticed some issues which affected our ability to meet demand. Now we do stress testing for

each model and for each new version of the model.

You can always do more tests! But there

are usually time pressures which mean

you have to prioritise which ones you do. I

think there is a ‘hierarchy of needs’ for tests

which you try to move up depending on

your backlog.’

When I was working on recommender systems for retail we had different tests for differ-

ent parts of the model development and retraining. In the initial development we used the

classic data science approach of splitting the data into train and test sets, until we had

reached a model with a sufficient baseline performance to deploy. However, once we were in

production all our data was precious and we didn’t want to waste data unnecessarily so we

trained on everything. Like any piece of software, I developed unit tests around key parts of

the algorithm and deployment.

Khalil Chourou

Data engineer

Equal Experts, EU

27

Experience report

Practices | MLOps Playbook

When working on an initiative that involves cutting edge technology like AI/ML, it is

very easy to get blind sided by the technological aspects of the initiative. Discussion

around algorithms to be used, the computational power, speciality hardware and soft-

ware, bending data to the will and opportunities to reveal deep insights will lead to the

business stakeholders having high expectations bordering on magical outputs.

The engineers in the room will want to get cracking as soon as possible. Most of the

initiatives will run into data definition challenges, data availability challenges and data

quality issues. The cool tech, while showing near miraculous output as a “proof of con-

cept” will start falling short of the production level expectations set by the POC stage,

thereby creating disillusionment.

To avoid this disillusionment, it is important at the beginning of the initiative to start

detailing the business metrics that would be affected. Then the team and the stake-

holders have to translate them into the desired level of accuracy or performance out-

put from the ML based on an established base line. The desired level of accuracy can

be staggered in relation to the quantum of business outcome (impact on the business

metrics) to define a hurdle rate beyond which it would be acceptable.

Rather than choosing an obsolete or worse, a random accuracy level that may not be

possible because of various factors that the team cannot control, this step ensures

that they will be able to define an acceptable level of performance, which translates to

valuable business outcome.

The minimum acceptable accuracy or performance level (hurdle rate) would vary de-

pending on the use case that is being addressed. An ML model that blocks transactions

based on fraud potential would need very high accuracy when compared to a model

built to predict repeat buy propensity of a customer that helps marketers in retargeting.

Without this understanding, the team working on the initiative won’t know if they are

moving in the right direction. The team may go into extended cycles of performance /

accuracy improvement assuming anything less is not acceptable, while in reality they

could have generated immense business value just by deploying what they have.

Business impact is more than just

accuracy - understand your baseline

Practices | MLOps Playbook 28

Rajesh Thiagarajan

Principal consultant

Equal Experts, India

29

Experience report

Practices | MLOps Playbook

At the start of a project to use machine learning for product recommendation, business

stakeholders were using vague terminologies to define the outcomes of the initiative. They

were planning downstream activities that would use the model output with the assumption

that the model would accurately predict the repurchase behaviour and product recommen-

dations, as if it can magically get it right all the time. They did not account for the probabil-

istic nature of the model predictions and what needs to be done to handle the ambiguities.

During inception, the team took time to explain the challenges in trying to build a model to

match their expectations, especially when we could show them that they had limited availa-

ble data and even where the data was available, the quality was questionable.

We then explored and understood their “as-is” process. We worked with them to establish

the metrics from that process as the current baseline and then arrived at a good enough

(hurdle rate) improvement for the initiative that can create significant business outcomes.

During these discussions we identified the areas where the predictions were going to create

ambiguous downstream data (e.g. although the model can predict with high enough accu-

racy who will buy again, the model can only suggest a basket of products that the customer

would buy instead of the one specific product that the business users were initially expect-

ing).

As the business understood the constraints (mostly arising out of the data availability or

quality), they were able to design the downstream processes that could still use the best

available predictions to drive the business outcome.

The iterative process, where we started with a base-line and agreed on acceptable improve-

ment, ensured that the data team was not stuck with unattainable accuracy in building the

models. It also allowed the business to design downstream processes to handle ambiguities

without any surprises. This allowed the initiative to actually get the models live into pro-

duction and improve them based on real world scenarios rather than getting stuck in long

hypothetical goals.

https://playbooks.equalexperts.com/inceptions

There are two core aspects of monitoring for any ML Solution:

• Monitoring as a software product

• Monitoring model accuracy and performance

Realtime or embedded ML solutions need to be monitored for errors and performance

just like any other software solution. With autogenerated ML solutions this becomes

essential - model code may be generated that slows down predictions enough to cause

timeouts and stop user transactions from processing.

Monitoring can be accomplished by using existing off the shelf tooling such as Pro-

metheus and Graphite.

You would ideally monitor:

• Availability

• Request/Response timings

• Throughput

• Resource usage

Alerting should be set up across these metrics to catch issues before they become

critical.

ML models are trained on data available at a certain point in time. Data drift or concept

drift (see How often do you deploy a model?) can affect the performance of the model.

So it’s important to monitor the live output of your models to ensure they are still

accurate against new data as it arrives. This monitoring can drive when to retrain your

models, and dashboards can give additional insight into seasonal events or data skew.

• Precision/Recall/F1 Score

• Model score or outputs

• User feedback labels or downstream actions

• Feature monitoring (Data Quality outputs such as histograms, variance,

completeness)

Alerting should be set up on model accuracy metrics to catch any sudden regressions

that may occur. This has been seen on projects where old models have suddenly failed

against new data (fraud risking can become less accurate as new attack vectors are

discovered), or an auto ML solution has generated buggy model code. Some ideas on

alerting are:

• % decrease in precision or recall.

• variance change in model score or outputs.

• changes in dependent user outputs e.g. number of search click throughs for a

recommendation engine.

Regularly monitor your model in

production

Practices | MLOps Playbook 30

Austin Poulton

Data scientist

Equal Experts, South Africa

For a fraud detection application, we adopted the usual best practices of cross validation

training set with an auto-ML library for model selection. The auto-ML approach yielded

a good performing model to start, albeit rather inscrutable for a fraud detection setting.

Our primary objective was to build that path to live for the fraud scoring application. We

followed up shortly thereafter with building model performance monitoring joining live out-

of-sample scores with fraud outcomes based on precision, recall and f1 measures tracked

in Grafana. Observability is vital to detect model regression - when the live performance

degrades consistently below what the model achieved during training and validation.

It became clear that we were in an adversarial situation in which bad actors would change

their attack patterns, which was reflected in data drift of the model inputs and consequent

concept drift.

The effort invested in developing the model

pipeline and performance monitoring

allowed us to detect this drift rapidly and

quickly iterate with more interpretable

models and better features.

31

Experience report

Practices | MLOps Playbook

When training or retraining you need a strategy for handling data records with quality

issues. The simplest approach is to filter out all records which do not meet your quality

criteria, but this may remove important records. If you take this approach you should

certainly look at what data is being discarded and find ways to resolve, if possible.

Other approaches are possible - for missing or incorrect fields we often follow the

standard practice of imputing missing or clearly incorrect values. Where we impute

values we typically record this in an additional column.

In cases where you can’t disentangle a data error from a real entry (e.g. data sets where

Jan 1900 could be a real data point) you may have to filter out good data points or

investigate individually.

Data quality is fundamental for all ML products. If the data suffers from substantial

quality issues the algorithm will learn the wrong things from the data. So we need to

monitor that the values we’re receiving for a given feature are valid.

Some common data quality issues we see are:

• missing values - fields are missing values.

• out of bound values - e.g. negative values or very low or high values.

• default values - e.g. fields set to zero or dates set to system time (1 jan 1900).

• format changes - e.g. a field which has always been an integer changes to float.

• changes in identifiers for categorical fields - e.g. GB becomes UK for a country

identifier.

Monitor data quality

Practices | MLOps Playbook 32

As with any modern software development process, we eliminate manual steps where

possible, to reduce the likelihood of errors happening. For ML solutions we make sure

there is a defined process for moving a model into production and refreshing as need-

ed. (Note that we do not apply this automation to the initial development and proto-

typing of the algorithms as this is usually an exploratory and creative activity.)

For an algorithm which has been prototyped, and accepted into production the

life-cycle is:

• Ingest the latest data.

• Create training and test sets.

• Run the training.

• Check performance meets the required standard.

• Version and redeploy the model.

In a fully automated lifecycle this process is repeated either on a schedule or triggered

by the arrival of more recent data with no manual steps.

There are a variety of tools and techniques to help with this. Some of the tools we

have found useful include:

• MLFlow

• AWS Sagemaker

• GCP Vertex AI

Automate the model lifecycle

Practices | MLOps Playbook 33

https://mlflow.org/

When creating a pricing estimation service for one of our clients we were working from a

blank canvas in terms of ML architecture. We knew that the model was going to be con-

sumed by a web application so we could deploy as a microservice, and that data came in

weekly batches with no real-time need for training.

We used a combination of S3 with versioning as our model store, and S3 event notifications,

Lambdas, Fargate and Amazon Load Balancer to automate the data ingest, provisioning and

update of two models, using CloudWatch to log the operations. The process is fully automat-

ed and triggered by the arrival of a weekly data drop into an S3 bucket.

Shaun McGee

Product & delivery

Equal Experts, USA

We took a lean approach using standard

AWS services to create a platform able to

ingest new data, retrain the model and

serve the model as an API endpoint.

34

Experience report

Practices | MLOps Playbook

One of the challenges of operationalising a model is integration. Having a model ready

to be called as an API is one task, having the external systems calling it is a completely

separate and often complex task.

Usually, the team that is operationalising the model doesn’t do the changes on the

external systems, it’s the teams responsible for those systems. These inter-team de-

pendencies are always hard to manage and can directly affect the delivery of a machine

learning project.

In addition, the complexity of integration depends directly on the systems that will

integrate with the model. Imagine that the goal of a model is to be used by a big, old

monolithic system that is very hard to change or to add features, with a cumbersome

deploy process. Without testing, the integration will be time consuming and it will

require effort from other teams that need to prioritise in their backlogs.

Based on the previous description, the best practice to minimise the impact of these

external dependencies on the ML project, is to deploy a skeleton of a model. A skeleton

model can be a dumb model that returns always one constant prediction, and with this

dumb model the external teams can start to ingegrate since the start of the project.

One key aspect of the integration is that it should have a feature flag that indicates

when the model should be used, so the skeleton model can be integrated, also being

called but without affecting the behaviour of the external systems.

Create a walking skeleton / steel thread

Practices | MLOps Playbook 35

Miguel Duarte

Data engineer

Equal Experts, EU

In one of our ML projects, we created a model to predict the behaviour of a user on a

webapp. The webapp was composed of a monolith, which was deployed once a week. The

webapp team always had a large backlog of features so prioritising external integrations was

always a slow process.

To make integration easier we created a

mock API at the start of the project. This

decoupled the integration from the mod-

el development, meaning that a lot of the

work could happen in parallel, significant-

ly reducing the time to the first working

version.

36

Experience report

Practices | MLOps Playbook

The computational profile of models can be very different during a model’s training

phase (i.e. when it’s in development) and when a model is used for inference (i.e. de-

ployed and making predictions in production). How you optimise your model can have

quite dramatic cost implications when running it.

During training, we show the in-development model a huge amount of training

examples, and then use optimisation techniques like gradient descent and auto-

matic differentiation to adjust the models’ internal weights by a small amount,

and then repeat this process many times. This involves both a lot of data move-

ment, and keeping track of internal optimisation variables that are only relevant

during the training phase. For very large models, we can parallelise training using

techniques such as data and model parallelism and split the computations over

multiple devices (e.g. GPUs). It may make sense to use specialised hardware such

as GPUs and TPUs.

During inference we show the model a single input (or a small batch of inputs)

and ask it to make a prediction against just that input, once. In this phase we

need to optimise a model to minimise latency (i.e. take as little time as possible

to produce an answer), and must choose strategies like whether to batch up

requests to a model or make them one at a time.

For small ML models, or models which don’t receive a large amount of traffic, opti-

mising the inference phase of the model may not be worth the cost - avoid premature

optimisation!

Several tools and techniques exist that help us produce leaner

models:

Pruning considers whether some model complexity can be shed without much

impact in performance. Many popular ML frameworks such as TensorFlow and

PyTorch have tools built in to help with this process.

Quantisation of model weights means finding ways to represent the internals of

a model so that they use less memory and allow operations to be processed in

parallel by modern hardware, but give nearly the same performance as the unop-

timised model. Quantisation is also supported by some modern ML frameworks

out of the box.

Deep learning compilers such as TVVM can apply optimisations to the computa-

tions that a model performs.

Appropriately optimise models for

inference

Practices | MLOps Playbook 37

https://www.tensorflow.org/model_optimization/guide/pruning/comprehensive_guide
https://pytorch.org/tutorials/intermediate/pruning_tutorial.html
https://www.tensorflow.org/model_optimization/guide/quantization/post_training
https://www.tensorflow.org/model_optimization/guide/quantization/post_training

Use vendor-specific tools such as NVIDIA’s TensorRT, Intel’s OpenVino or

Graphcore’s Poplar tools when running on specific hardware

At the extreme end of performance optimisation, heavy users can consider spe-

cialised hardware offered by the likes of Google, NVIDIA, Cerebras, Graphcore,

SambaNova and others. This is an exciting and rapidly growing market! Many of

these offerings are available in large cloud providers (e.g. NVIDIA GPUs, Google

TPUs, Graphcore IPUs).

Being able to scale deployments of your model dynamically to meet the de-

mands of traffic to your service, and free up resources when demand is low. For

models hosted as endpoints in a cloud environment a simple solution can be

placing a load balancer in front of the model endpoint.

Our recommendation is to track the training and in-production running costs of a mod-

el carefully, and to regularly review whether the effort of better optimisation makes

sense for you. To avoid ending up in a situation where you can’t deploy new versions of

your model rapidly, any optimisation you invest in needs to be repeatable and automat-

ic (a core part of the model development process).

Practices | MLOps Playbook 38

I was asked to help a team improve the ability of their algorithms to scale. The purpose of

the algorithm was to create an index that could find the same or very similar items from a

text description and an image. It was a very cool algorithm, which used some of the latest

deep-learning techniques but was just taking too long to add new items to the index.

I took an end to end look at the processing so I could understand the latencies, and found

several points that could be improved. Some of the optimisations were small things but some

of the more important ones were:

• The models had to be run on GPUs, which were often shared with other jobs, so

I implemented a GPU acquisition algorithm to lock and release the resources the

algorithm needed.

• The algorithm accessed lots of data from GCP BigQuery - introducing

partitioning made it much quicker to get to the data it needed.

• Introducing a two phase approach of an initial quick filter, followed by applying

the complex algorithm only where matches might occur reduced matching times.

• The initial code featured a race condition which sometimes occurred. Four

lines of code were enough to implement a simple locking condition to stop this

happening.

Putting all these changes together resulted in the code executing at less than 10% of the

time than previously, which meant that the new data could be processed in the right time

frames and the backlog of items to be indexed could be removed as well.

Emrah Gozcu

ML / Data engineer

Equal Experts, UK

39

Experience report

Practices | MLOps Playbook

40

Our playbooks are collections of observations

that we have made many times in different

sectors and clients. However, there are some

emerging technologies and approaches

which we have only applied in one or two

places to date, but which we think are really

promising. We think they will become

recommended practices in the future – or

are at least worth experimenting with. For

now we are recommending you explore

them at least.

Explore

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

Explore | MLOps Playbook

Data is central to any ML system - it’s needed both online and offline, for exploration

and realtime prediction. One of the challenges in operationalising any ML algorithm is

ensuring that any data used to train the model is also available in production. It is not

simply the raw data that is used by the model - in most cases the raw data needs to be

transformed in some way to create a data feature. (See Provide an Environment which

Allows Data Scientists to create and test models for a description of Features and Fea-

ture Engineering.)

Creating a feature can be a time-consuming activity and you need it to be available

for both offline and online activities. Furthermore, a feature you have created for one

purpose may well be relevant for another task. A feature store is a component that

manages the ingestion of raw data (from databases, event streams etc.) and turns it

into features which can be used both to train models and as an input to the operational

model. It takes the place of the data warehouse and the operational data pipelines -

providing a batch API or query mechanism for retrieval of feature data-sets for model

training, as well as a low latency API to provide data for real-time predictions.

The benefits are that:

• You do not need to create a separate data pipeline for the online inference

• Exactly the same transforms are used for training as for online inference

Feature stores

41Explore | MLOps Playbook

42

Experience report

Explore | MLOps Playbook

Bas Geerdink

ML specialist

Equal Experts, EU

In my experience MLOps is not just about tooling. It’s a culture - a mindset for bringing data

scientists, engineers and content experts together - but let’s just focus on some tooling for

now!

One of the marks of successfully getting machine learning into operations is that tedious

and difficult tasks are automated, and it is easy for developers and data scientists to work

together. I’ve recently been using Google Vertex AI as the framework for managing machine

learning models at an online retailer. Prior to using Vertex AI, there were several teams doing

ML operations in different ways. Some were using Airflow and Kubernetes, others were using

hand-rolled in-house builds and data stores.

We have used Vertex AI to create a shared toolset for managing the model lifecycle,

with standardised components to do the typical things you need to do:

• Workflow management/ orchestration

• Model serving

• Model repository

• Feature store

I have found the feature store to be really useful. Our models need to use aggregated

features like average lead times for products, and the Vertex AI feature store is a good

place to calculate and store them. Using the feature store means that I know that the

data is processed the same way for training as when applied to the model in produc-

tion. It saves us time because we don’t have to create separate data pipelines for the

deployed model in operation. It also has other advantages - keeping data in the feature

store makes it easier to query how these aggregated features have changed over time. I

think they will become a standard part of most ML environments.

43

Pitfalls

Pitfalls | MLOps Playbook

INTRODUCTION

KEY TERMS

WHAT IS MLOPS?

PRINCIPLES

PRACTICES

EXPLORE

PITFALLS

User Trust and Engagement

A common pitfall when surfacing a

machine learning score or algorithmic

insight is that end users don’t understand

or trust the new data points. This can lead

to them ignoring the insight, no matter how

accurate or useful it is.

44Pitfalls | MLOps Playbook

Users will prefer concrete domain based values over abstract scores or data

points, so feed this consideration into your algorithmic selection.

Give access to model monitoring and metrics once you are in production - this

will help maintain user trust if they wish to check in on model health if they have

any concerns.

Provide a feedback mechanism - ideally available directly alongside the model

result. This allows the user to confirm good results and raise suspicious ones,

and can be a great source of labelling data. Knowing their actions can have a

direct impact on the model provides trust and empowerment.

This usually happens when ML is conducted primarily by data scientists in isolation

from users and stakeholders, and can be avoided by:

Engaging with users from the start - understand what problem they expect the

model to solve for them and use that to frame initial investigation and analysis

Demo and explain your model results to users as part of your iterative model

development - take them on the journey with you.

Focus on explainability - this may be of the model itself. our users may want

feedback on how it’s arrived at its decision (e.g. surfacing the values of the most

important features used to provide a recommendation), or it may be guiding

your users on how to take action on the end result (e.g. talking through how to

threshold against a credit risk score)

Practices | MLOps Playbook 45

Shital Desai

Product owner

Equal Experts, UK

We had a project tasked with using machine learning to find fraudulent repayment claims,

which were being investigated manually inside an application used by case workers. The

data science team initially understood the problem to be one of helping the case workers

know which claims were fraud, and in isolation developed a model that surfaced an score of

0 - 100 overall likelihood of fraud.

The users didn’t engage with this score as they weren’t clear about how it was being derived,

and they still had to carry out the investigation to confirm the fraud. It was seldom used.

A second iteration was developed that provided a score on the bank account involved in the

repayment instead of an overall indicator. This had much higher user engagement because it

indicated a jumping off point for investigation and action to be taken.

Users were engaged throughout development of the second iteration, and encouraged to

bring it into their own analytical dashboards instead of having it forced into the case work-

ing application. Additionally, whenever a bank account score was surfaced, it was accompa-

nied by the values of all features used to derive it. The users found this data just as useful as

the score itself for their investigations.

46

Experience report

Pitfalls | MLOps Playbook

ML models come in many flavours. Some models are naturally easy to explain. Rules-

based models or simple statistical ones can be easily inspected and intuitively under-

stood. The typical machine learning approaches are usually harder to understand. At

the extreme, deep learning models are very complex and need specialised approaches

to understand their inner workings.

It is important to know if explainability to end users is a requirement up front, be-

cause this will influence the model you decide to go with. In some use cases, there is a

regulatory need and explainability is an essential requirement e.g. for credit risking it is

essential to be able to explain why an applicant has been denied a loan. In other cases

the model will simply not be accepted by end users if they cannot understand how a

decision has been reached.

Explainability goes hand in hand with simplicity, and a simple model may well perform

worse than a complex one. It’s is common to find that an explainable model performs

less well in terms of accuracy. This is fine! Accuracy alone is not always the only meas-

ure of a good model.

In our experience, engaging the end user and explaining how the model is making deci-

sions often leads to a better model overall. The conversations you have with end users

who understand their domain and data often result in the identification of additional

features that, when added, improve model performance. In any event, explainability is

often a useful part of developing the model and can help to identify model bias, reveal

unbalanced data, and to ensure the model is working in the intended way.

If you find you have a complex model and need an explanatory solution, these tools

can help:

• Yellowbrick

• SHAP - good for use during model development

• The What If Tool - good for counterfactual analysis

• Google’s AI Explanations - good for using on deployed models (tensorflow

models, tabular, text, image data, AutoML)

• Their related white paper

Explainability

47Pitfalls | MLOps Playbook

https://www.scikit-yb.org/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
https://cloud.google.com/ai-platform/prediction/docs/using-what-if-tool
https://cloud.google.com/ai-platform/prediction/docs/ai-explanations/overview
https://storage.googleapis.com/cloud-ai-whitepapers/AI%20Explainability%20Whitepaper.pdf

Oshan Modi

Data scientist

Equal Experts, India

In one of the engagements that I was involved in, we had to take an ML initiative from an

existing partner. During discovery we found that the stakeholders in the business units did

not understand the machine model that had been built and their questions related to the

output (predictions) were answered with deep technical jargon that they could not compre-

hend. This resulted in the business units at best using the output grudgingly without any

trust or at worst completely ignoring the output.

One of the first things we did when we took over the operations of the system was to trans-

late the model outputs into outcomes and visuals that explained what the model was pre-

dicting in business terms. This was done during the initial iterations of building the model.

Three significant changes happened in how the data team was able to collaborate with

the business units:

The stakeholders understood what the model was trying to do. They were able to

superimpose the output of the models on their own deep understanding of the busi-

ness. They either concurred with the model outputs or challenged them. The ques-

tions that they raised helped the data team to look for errors in their data sources/

assumptions or explore additional data/features, thereby improving the output.

The business units also understood better the need for high quality data that affect

the model outputs. They took steps to fix processes that either were incomplete in

data collection or were ambitious resulting in confused data collection.

As the stakeholders were involved very early in the model building process, they con-

sidered themselves to be co-creators of the model rather than just consumers. This

resulted in enthusiastic adoption of outputs including acceleration of any process

changes needed to leverage the work.

We were able to deploy five models in production over a period of six months that were be-

ing used to generate business outcomes compared to one model that went live in the earlier

attempt, after 18 months.

1

3

2

48

Experience report

Pitfalls | MLOps Playbook

Like many people we both love and hate notebooks such as Jupyter. Data science and

the initial stages of model/algorithm development are creative processes, requiring lots

of visualisations and quick pivoting between modelling approaches. For this rapid anal-

ysis of data and prototyping of algorithms, notebooks are excellent tools and they are

the tool of choice for many data scientists. However they have a number of features

which make them difficult to use in production.

• Notebook files contain both code and outputs - these can be large (e.g. images)

and also contain important business or even personal data. When used in

conjunction with version control such as Git, data is by default committed to the

repo. You can work round this but it is all too easy to inadvertently pass data to

where it shouldn’t be. It also means that it is difficult/impossible to see exactly

what changes have been made to the code from one commit to the next.

• Notebook cells can run out of order - meaning that different results are possible

from the same notebook - depending on what order you run the cells in.

• Variables can stay in the kernel after the code which created them has been

deleted.

• Variables can be shared between notebooks using magic commands.

• Not all python features work in a notebook e.g. multi-processing will not

function in Jupyter

• The format of notebooks does not lend itself easily to testing - there are no

intuitive test frameworks for notebooks.

In some cases we have used tools like papermill to run notebooks in production, but

most of the time moving to standard modular code after an initial prototype has been

created will make it more testable, easier to move into production and will probably

speed up your algorithm development as well.

Avoid notebooks in production

49Pitfalls | MLOps Playbook

https://jupyter.org/
https://papermill.readthedocs.io/en/latest/

50

Experience report
I first came into contact with a Jupyter notebook while working on a predictive maintenance

machine learning project, after a number of years as a production software developer. In this

scenario, I found notebooks to be an invaluable resource. The ability to organise your code

into segments with full markdown support and charts showing your thinking and output at

each stage made demos and technical discussions simple and interactive. In addition, the

tight integration with Amazon SageMaker and S3 meant I could work with relative freedom

and with computing power on-tap while remaining in the client’s estate.

However, as our proof of concept got more complicated, with a multi-stage ELT pipeline and

varying data normalisation techniques etc, I found myself maintaining a block of core ELT

code that was approaching 500 lines of untested spaghetti. I had tried, with some success,

to functionalise it so it wasn’t just one script and I could employ some DRY principles. How-

ever, I couldn’t easily call the functions from one notebook to another so I resorted to copy

and paste. Often I would make a small change somewhere and introduce a regression that

made my algorithm performance drop off a cliff, resulting in losing half a day trying to figure

out where I had gone wrong. Or maybe I’d restart my code in a morning and it wouldn’t work

because it relied on some globally scoped variable that I’d created and lost with my kernel

the night before. If there were tests, I could have spotted these regressions and fixed them

quickly, which would have saved me far more time in lost productivity than the tests would

have taken to write in the first place.

In retrospect, when I come to do work like

this in the future, I would opt for a hybrid

approach. I would write the initial code for

each stage in a notebook where I could

make changes in an interactive way and de-

sign an initial process that I was happy with.

Then, as my code ‘solidified’, I would create

an installable package in a separate GIT

repository where I could make use of more

traditional software development practices.

Pitfalls | MLOps Playbook

Jake Saunders

Python developer

Equal Experts, UK

The final advantage of this approach, in a world of deadlines where proof of concepts far

too often become production solutions, is that you productionise your code as you go. This

means that when the time comes that your code needs to be used in production, standardis-

ing it doesn’t seem like such an insurmountable task.

Using this approach has a number of advantages:

• You can import your code into any notebook by a simple pip install. You can use

the same tested and repeatable ELT pipeline in a number of notebooks with

differing algorithms with confidence.

• You can write and run tests and make use of CI tools, linting and all the other

goodies software developers have created to make our code more manageable.

• Reduce your notebook’s size, so that when you’re doing presentations and

demos you don’t need 1,000 lines of boilerplate before you get to the good

stuff.

51Pitfalls | MLOps Playbook

Exposure of data in the pipeline - you will certainly need to include data pipe-

lines as part of your solution. In some cases they may use personal data in the

training. Of course these should be protected to the same standards as you

would in any other development.

Embedding API Keys in mobile apps - a mobile application may need specific

credentials to directly access your model endpoint. Embedding these creden-

tials in your app allows them to be extracted by third parties and used for other

purposes. Securing your model endpoint behind your app backend can prevent

uncontrolled access.

Operationalising ML uses a mixture of infrastructure, code and data, all of which should

be implemented and operated in a secure way. Our Secure Development playbook

describes the practices we know are important for secure development and operations

and these should be applied to your ML development and operations.

Some specific security pitfalls to watch out for in ML based solutions are:

Making the model accessible to the whole internet - making your model

endpoint publicly accessible may expose unintended inferences or prediction

metadata that you would rather keep private. Even if your predictions are safe

for public exposure, making your endpoint anonymously accessible may present

cost management issues. A machine learning model endpoint can be secured

using the same mechanisms as any other online service.

Poor security practices

52Pitfalls | MLOps Playbook

https://playbooks.equalexperts.com/secure-delivery-playbook

We have spoken a lot about performance in this playbook but have deliberately shied

away from specifying how it is calculated. How well your algorithm is working is con-

text-dependent and understanding exactly the best way to evaluate it is part of the

ML process. What we do know is that in most cases a simple accuracy measure - the

percentage of correct classifications - is not the right one. You will obviously collect

technical metrics such as precision (how many classifications are true) and recall (how

many of the true examples did we identify) or more complex measures such as F scores,

area under the curve etc. But these are usually not enough to gain user buy-in or define

a successful algorithm on their own (see Business Impact is more than just Accuracy -

Understand your baseline for an in-depth discussion of this.)

Despite the hype, machine learning should not be the default approach to solve a

problem. Complex problems, tightly tied to how our brains work like machine vision

and natural language processing, are generally accepted as best tackled with artificial

intelligence based on machine learning. Many real-world problems affecting a mod-

ern organisation are not of this nature and applying machine learning where it is not

needed brings ongoing complexity, unpredictability and dependence on skills that are

expensive to acquire and maintain. You could build a machine learning model to predict

whether a number is even or odd - but you shouldn’t.

We typically recommend trying a non-machine learning based solution first. Perhaps

a simple, rules-based system might work well enough to be sufficient. If nothing else,

attempting to solve the problem with a non machine-learning approach will give you a

baseline of complexity and performance that a machine learning-based alternative can

be compared with.

Don’t treat accuracy as the only or even

the best way to evaluate your algorithm

Use machine learning judiciously

53Pitfalls | MLOps Playbook

If you are deploying your algorithm as a microservice endpoint it’s worth thinking about

how often and when it will be called. For typical software applications you may well

expect a steady request rate. Whereas, for many machine learning applications it can

be called as part of a large batch process leading to bursty volumes where there are no

requests for five days then a need to handle 5 million inferences at once. A nice thing

about using a walking skeleton (Create a Walking Skeleton / Steel Thread) is that you

get an early understanding of the demand profile and can set up load balancing for

appropriate provisioning.

The data scientists who create an algorithm must have access to the data they need, in

an environment that makes it easy for them to work on the models. We have seen sit-

uations where they can only work on data in an approved environment which does not

have access to the data they need and they have no means of adding data they want

to create their algorithms. Obviously they will not be able to work with these tools and

will likely seek opportunities elsewhere to apply their skills.

Similarly, data science is a fast moving domain and great algorithms are open-sourced

all the time - often in the form of Git repositories that can be put to use immediately to

meet business needs. In a poorly designed analysis environment it is not possible to use

these libraries, or they must go through an approval process which takes a long time.

In many cases these problems are a result of over-stringent security controls - whilst

everyone needs to ensure that data is adequately protected, it is important that data

architects do not become overzealous, and are able to pragmatically and rapidly find

solutions that allow the data scientists to do their work efficiently.

In some situations, IT functions have taken a simplistic view that analytical model de-

velopment is identical to code development, and therefore should be managed through

the same processes as IT releases using mocked/obfuscated or small volume data in

no-production environments. This shows a lack of understanding of how the shape and

nuance of real data can impact on the quality of the model.

Don’t forget to understand the

at-inference usage profile

Don’t make it difficult for data scientists

to access data or use the tools they need

54Pitfalls | MLOps Playbook

You will only get value from your invest-

ment in machine learning when it has

been integrated into your business systems.

Whilst it can be technically straightforward

to provide an output, integrating into the

business processes can take some time due

to usability needs and security constraints.

Not taking into consideration the

downstream application of the model

Technical incompatibility or unrealistic accuracy expectations, if not addressed at

the beginning of the project, can lead to delays, disappointment and other negative

outcomes. For example, it is common to apply ML to tasks like ‘propensity to buy’ -

finding people who may be interested in purchasing your product. If you did not take

this downstream application into account from early on in the development, you might

well provide the output in a form which is not usable such as an API endpoint, when

a simple file containing a list or table supplied to an outbound call centre is all that is

needed. Taking our recommendation to Create a Walking Skeleton/ Steel Thread is a

great way to avoid this.

55Pitfalls | MLOps Playbook

Paul Brabban

Jon Carney

Simon Case

Scott Cutts

Claudio Diniz

Bas Geerdink

Thorben Louw

Jennifer Stark

Rajesh Thiagarajan

Main Authors Thanks also to

Khalil Chourou

Adam Fletcher

Matteo Guzzo

Uttam Kini

Oshan Modi

Shaun McGee

Austin Poulton

Katharina Rasch

Jake Saunders

Isabell Britsch

We’d like to thank everyone within Equal Experts who has shared their wisdom and

experiences with us, and have made this playbook possible.

Contributors

56Contributors | MLOps Playbook

https://www.linkedin.com/in/paulbrabban
https://www.linkedin.com/in/simon-case-2639533/
https://www.linkedin.com/in/scott-cutts-15b08723/
https://www.linkedin.com/in/cldiniz/
https://www.linkedin.com/in/geerdink/
https://www.linkedin.com/in/thorbenlouw
https://www.linkedin.com/in/starkja/
https://www.linkedin.com/in/rajeshkthiagarajan/

A global network of technology shapers,

we’ll keep you innovating.

Engaging 3,000 consultants across 5 continents, we help create leading digital products

and services. We decide with data, design for users, deliver at pace and scale sustaina-

bly.

Bringing undiluted expertise

We only engage senior consultants. In years of experience, our people have twice the

industry average. Low-ego and curious, they share knowledge with your teams and

across our network.

Building a culture of innovation?

You need Experts
by your side

Keeping you innovating

We take the time to understand where you are now. We get excited about where you

want to be. Building momentum with many small changes, we embed innovation into

your every day.

Easy to work with

Valuing context, we never offer cookie-cutter solutions. Treating each other and our

customers as equals, we solve problems with you. Infusing our culture and skills into

your organisation, we build long-lasting value.

Experienced consultants know what they’re doing – we free them to do what they do

best. Find out what it’s like to work with us get in touch.

57About | MLOps Playbook

https://www.equalexperts.com/contact-us/

