
Powering a
leading payment
platform with
event-driven
architecture
Using events to enhance customer

experience, automate fraud detection,

and seamlessly handle complex

payment journeys for retail merchants.

As the Middle East’s leading
provider, with annual
turnover of around $350
million, our client offers
a wide range of payment
services.

This case study will help you to understand:

The benefits of adopting
event driven architectures

and asynchronous processing

in retail payment gateways

How events can be used for

real-time risk management

and fraud detection in

transactions

How event-driven

architecture and

microservices can prevent

cascading service degradation

during peak usage

From card issuing and merchant acquisition to payment processing and

provision of in-store, online and mobile payment solutions—across multiple

international markets—they manage sophisticated end-to-end payment

journeys. And, they do it for all types of clients; from large enterprise and

government organisations to small-medium retail businesses and micro-

merchants.

The lynchpin for many of these services is an event-driven payments platform

that Equal Experts helped to build from the ground up. The platform provides

merchants with a single point of contact to initiate, process, capture and track

a variety of payments spanning credit card, bank transaction, PayPal, China

UnionPay, M-Pesa and more. Learn how the payment platform uses event driven

architecture to provide secure, fast and reliable payments, protect against

fraudulent payments, and offer a seamless experience for both merchants and

customers alike.

Table of contents.

01. About the event-driven payment platform

02. The benefits of asynchronous processing in payment validation

03. Using events for real-time fraud detection

04. Improving UX through event-based interaction

05. About the technology stack

4

6

8

9

10

4

01
ABOUT THE EVENT-DRIVEN PAYMENT PLATFORM.

The digital payment platform is

built using microservices and

leverages event-driven patterns for

real-time automation and insights

into payment processing.

While the payment platform consists of more than 25 microservices in totality, this case study

will focus on a subset of core services to highlight the value of event-driven processes that

occur within the platform.

These include the:

• Transaction service: which produces and consumes events to facilitate customer orders and accept

various payments.

• Reporting service: primarily used by merchants in a self-service portal, producing and consuming events

for real-time display of transaction and payment information across a variety of channels.

• Risk assessment service: which produces and consumes events while determining the potential risk

associated with orders and payments.

• Notification service: which produces and consumes events while automating communications to highlight

the status, or changes in status, of orders and payments.

Whenever an order or payment is processed in the transaction service, it sends out a variety of events (which

can be thought of as ‘triggers’ containing data for subsequent, automated processes) to the event backbone,

Azure Event Hub. The event backbone, in turn, fires events to services which are configured to ‘listen’ to them.

These listening services are configured to consume specific events related to their core business function; it’s a

‘pull’-style configuration, rather than the ‘pushing’ of data packets.

For example, if the transaction service processes 50 payments from one personal account number (PAN) in

10 minutes, an event is produced to notify the risk assessment service to take action to prevent the fraud (see

section 03. ‘Using events for real-time fraud detection’). The reporting service may ‘listen’ for the same event,

and provide an update that a certain payment or account is potentially compromised.

Examples of event-driven processes include:

• All payment processes in the transaction service. This means the complex workflows associated with

payment submission, authorization, transitioning payments into escrow accounts, merchant capture, and

credit reversal callback are all seamlessly automated and tracked in an immutable log.

• Transactional emails, SMS messages and merchant notifications are fully event-driven, ensuring both

customer and merchant have real-time updates into payment status and processing.

• Advanced risk rules are evaluated using events to detect and prevent potential fraud in real-time.

• Events trigger updates to card management systems for reversal of any voided transactions.

• Recurring and subscription payments are automatically triggered using events.

• On successful completion of payment, the transaction service generates a series of events for reporting

purposes. This includes everything from creating an immutable trail of payments for merchant

recordkeeping, to generating reports and adding to computed dashboard data.

Events provide the power to quickly extend functionality

In addition to automating processes, improving real-time insight, and enhancing the resilience of systems,

event driven architectures are infinitely—and easily—extensible.

For example, imagine a scenario where the above process requires the introduction of a gateway risk

evaluation. Events are already being generated and fed into the event backbone; another event consumer (the

risk evaluation service) can be configured to ‘listen for’ and consume that same stream of events for an entirely

independent business requirement.

6

02
THE BENEFITS OF ASYNCHRONOUS PROCESSING IN

PAYMENT VALIDATION.

Picture the scenario: you run an

online retail store, selling high value

homewares like televisions, watches

and cosmetics.

A customer visits your eCommerce store and orders a TV. By submitting their card details, a

series of events are immediately triggered to start validating the payment.

On payment capture, a series of events are triggered to automate notifications to both you and

your customer.

While the notifications are being prepared and sent—which only takes a couple of seconds—all

of your reporting is updated in real-time with detailed information highlighting the nature of

the payment. You receive a notification, and you can view the information in your self-service

portal.

Critically, the varying steps in these payment validation processes can occur

asynchronously in event-driven architectures.

Structuring the payment process as a series of decoupled, independent mircoservices creates

two crucial benefits;

1. Speed, and

2. Reliability of processing.

Firstly, the various, complex steps involved in validating payments can occur in a non-linear

way. This makes things faster overall, especially when compared with traditional sequential or

synchronous processing.

By their nature, event-driven architectures are ‘fire and forget’. In other words, there’s no

compulsory requirement for a microservice to wait for a response before initiating the next step

in a sequence.

For example, the transaction service might receive a payment, fire an event to the reporting

service to create a log of that payment being received, and begin the process of validating that

payment. This process can occur entirely independent of the reporting service acknowledging

to the transaction service that a log has been created and saved in the reporting database.

7

These efficiencies may seem small in isolation, but
at scale — when large enterprises or national retail-
ers are processing tens or hundreds of thousands

of payments per hour — the impact for processing
and customer experience can be huge.

For example, the transaction service might receive a payment, fire an event to the reporting

service to create a log of that payment being received, and begin the process of validating that

payment. This process can occur entirely independent of the reporting service acknowledging

to the transaction service that a log has been created and saved in the reporting database.

In addition to speed, asynchronous processing and event driven architectures break the chains

of interdependencies commonly seen in synchronous structures like REST or gRPC. This

drastically reduces the risk of service degradation cascading across multiple microservices.

8

03
USING EVENTS FOR REAL-TIME FRAUD DETECTION.

In addition to speed and reliability,

event-driven processing allows the

payment platform to screen for

fraudulent transactions much faster.

And even pre-empt and block those

transactions before they can occur.

In most card-based frauds, stolen cards are used to make multiple, rapid transactions through

different channels in quick succession. For example, a person might quickly attempt a

transaction on ten different devices in five minutes using a stolen card.

Using events, the platform tracks attempted transactions against specific primary account

numbers (PANs) and triggers an event for each transaction. Those events are recorded against

a sliding window of time. If a specific PAN exceeds the acceptable transaction threshold within

a certain time window—for example, 25 transaction attempts within a 30-minute period—

another event is triggered and consumed by a fraud-risk engine for analysis. The risk engine, in

turn, flags potentially fraudulent transactions in real time, and the proposed payment(s) will be

prevented from progressing towards validation.

Real-time views of merchant-customer risk rules

Events are also useful for version-control style functionality and sustained visibility of

merchant-customer activity.

Whenever sensitive risk rules are modified by merchants using the self-service platform—for

example, they decide to block certain countries or increase their online transaction limits—the

configuration service creates an event which is consumed by the notification service. The

notification service triggers an event to the fraud management team to ensure full, real time

visibility of any changes to the risk rules, and a more detailed, to-the-minute profile of each

customers’ unique context.

9

04
IMPROVING UX THROUGH EVENT-BASED INTERACTION.

While event driven architectures are

enormously beneficial for internal
processing and operations, they offer

crucial benefits in general end user
experience too.

Merchants get their money faster than ever before

Payment platforms are incredibly high throughput applications. Additionally—as a leading

provider of payment solutions—our client integrates with a huge number of merchants to serve

customers around the world.

By decoupling microservices and using asynchronous processing (see section 02. ‘The benefits

of asynchronous processing in payment gateways’), we can provide high speed transaction

rates which are simply not possible using synchronous blocking or sequential processing. The

result? Merchants get revenue delivered to their acquisition accounts faster than before, and

customers get their orders processed and confirmed at lightning pace.

An event-driven self-service portal makes life easy for merchants

Merchants can access a self-service portal which offers:

• Full visibility of every transaction’s status across all channels; from initial authorisation to capture. An event-

driven architecture ensures merchants can access and understand all payments in play, as they’re processed

in real-time.

• Configurable gateway risk rules—from blocking certain countries to increasing online transaction limits—

which use events to predict and protect against fraudulent transactions.

• Close-to-real time data visuals providing detailed reports, chargebacks, payments histories, and other

information.

10

05
ABOUT THE TECHNOLOGY STACK.

By their nature, event-driven archi-

tectures are inherently extensible

and provide a range of benefits for
integration.

For example, events can mitigate instances of ‘domain bleeding’ by reconfiguring data in

whichever way any third-party interfaces might require. This is particularly useful in a payment

platform, digital banking platform, or any other type of complex system that requires multiple

integrations.

Additionally, the payment platform’s microservice applications use a Hexagon architecture

pattern that follows the domain-driven design philosophy. This provides the flexibility to change

or update the technology stack without modifying domains or business rule implementations.

Tools

11

Want to
know more?
Are you interested in this project?

Or do you have one just like it?

Get in touch. We’d love to tell you more about it.

https://www.equalexperts.com/contact-us/

