
A new benchmark
in banking
experience.
Using event driven architecture to create

inspired customer experiences through real-

time interactions and business insights.

Today, more than ever—and

whether they realise it or

not—customers judge banks

on their technology. Why?

This case study will help you to understand:

How good digital services

can be launched to

customers within days.

Why a Digital Platform must

be treated as a product,

rather than a project.

The importance of

culture in a Digital

Platform ecosystem.

Because people want easy and immediate money management. People want

their banking experiences to be personalised and relevant, based on real-time

interactions and activity. In recognising this, one of Australia’s most prominent

and pioneering digital banks created a mobile app to combine event driven

architecture with industry-leading user experience. The formula proved an

immediate hit, rapidly accumulating a large customer base, with many deferring

from the traditional ‘big four’. It was equally powerful for the digital banks’

internal processes too. The architecture offered more dependable services

overall, through reduced interdependencies. It offered increased flexibility for

integrations, and incredibly powerful automated data-logging for regulatory

purposes. And, it enabled the digital bank to quickly deploy new features and

differentiators for customers. Here’s how event driven architecture can play a

crucial role in delivering new benchmarks for forward-thinking banks.

Table of contents.

01. An introduction to event driven architecture

02. Using events for compeling customer experiences

03. Technology, tools and events in third-party integrations

04. Using events for regulatory compliance and reconciliation

05. Strategies for data management

4

7

10

12

13

4

01
AN INTRODUCTION TO EVENT DRIVEN ARCHITECTURE.

Our digital bank partner burst

onto the scene with a desire

to do banking differently. In

contrast to traditional approaches,

they embraced event driven

technologies to make things fun,

fast, personal, and easy.

Imagine yourself at a restaurant. You finish a delicious meal and the bill comes to your table. You

tap your card to pay and start chatting with the waiter about how much you’ve enjoyed yourself.

Before the receipt is printed—and even before you finish the conversation—you receive a

detailed transaction notification on your mobile app. It tells you exactly how much you’ve spent

on ‘eating out’ for the month so far. It also provides extra context about the restaurant you’ve

just paid; with a Google map, opening times, contact information, reviews, and more.

In the few hundredths of a second that pass while this information is collected, categorised and

displayed for you, the bank’s backend services are busy too.

The bank has received a payload notification from the global payment processor, converted

the information into ISO standard format, passed it to the core banking platform to record the

transaction, adjusted the bank balance, logged the transaction for reporting and analytics, and

completed a whole other host of automated banking or operational processes; all immediately

triggered by your initial tap-to-pay.

5

That initial tap-to-pay could also trigger anything from compiling real-time regulatory reports,

to saving a data point that may trigger a future promotion or customer benefit. For example,

if you spend less on the ‘eating out’ category in the next few months, you might get access to

a new account feature or customer benefit. It doesn’t even matter if that feature or benefit

doesn’t exist yet; the information required to facilitate it in the future is being automatically

stored and can be easily accessed at any point (and for a wide variety of purposes) in the future.

This scenario is possible—along with many, many more like it—thanks to events and event

driven architecture.

Defining and understanding events

Events are effectively incredibly versatile messages which are generated when certain actions are completed

in the digital bank’s platform, or in any one of the systems connected to the digital bank’s platform.

Events are stored in immutable logs called ‘topics’ and received by event ‘consumers’. An event can trigger

subsequent actions or business processes immediately, or can be stored for an indefinite period of time until

another combination of events, or catalytic number of events, initiates the designated action.

Examples of events can include:

• A customer profile is created or updated

• An account is created

• A transaction occurs

• A customer applies for a loan

• A customer is approved for a loan

• An eKYC check is completed for identity verification

6

Understanding the basics of events

An event represents a point-in-time state for a specific object of data. Events are ‘streamed’ from systems or

microservices that generate them and ‘consumed’ by other systems that want to use them for various business

processes. Events are managed by an ‘event backbone’—in the case of our work with this digital bank, Apache

Kafka—which manages events in a way that separates the producer and the consumer. Crucially, events can be

archived (written to disk storage in the cloud over time, for example) but cannot be updated. Therefore, each

topic represents an immutable log of information which can be easily accessed and consumed by different

consumers.

As events are created, they are automatically appended to topics, which queue all events from the inception of

the topic. Topics are typically defined and structured to reflect key business domains. Example topics from our

work with the digital bank include Accounts, Transactions and Customers.

Event producers and consumers can operate completely independently of each other. Additionally, we can

configure multiple consumers of the same event, and each consumer can consume events at their own pace, for

markedly different purposes.

For example, a customer updating their account information might be logged as an event in the ‘accounts’ topic,

but it could also be consumed by a dedicated microservice whose sole task is to check and reconcile potential

discrepancies in account information across platforms.

7

02
USING EVENTS FOR COMPELLING CUSTOMER EXPERIENCES.

Events provide the real-time informa-

tion you need to deliver the tailored,

immediate banking experience that

modern customers expect.

Examples from our work with this pioneering digital bank include:

Seamless, speedy, and more meaningful customer service

In partnership with the digital bank, we use events to make customer service fast and highly

personalised. Any time a customer calls with an enquiry, service agents can immediately access

the relevant customer’s accounts, detailed transaction information, cards—whatever details

are necessary to their enquiry. This is immediate and automated, and available without the slow

processes associated with querying the core-banking platform, or any need to call on an eKYC

solution or similar. It’s all seamlessly and immediately available via Zendesk, with information

populated using events.

This ensures customers don’t have to endure the frustration of repeating information to

different departments, or across multiple customer service calls.

Events provide a far more complete view of your customers

We created a microservice to consume a variety of events from the ‘customers’, ‘transactions’,

and ‘accounts’ topics, along with other information like card data and details from the eKYC

platform. It brings all of those events in from a variety of sources and builds a cache. The master

of these details is always held as an immutable log in the Kafka event backbone.

In more traditional architectures, data is structured and optimised for transaction processing,

or reporting, or for reading. One advantage of event streaming is that each event consumer can

re-structure the data it receives, to configure information in the way it’s needed for a specific

process. We can leverage significant efficiencies by tuning this microservice to call on a wide

range of different data sources, interpret them as needed, and rapidly surface a full view of each

customer.

8

‘Always on’ access to key banking functions and features

Frustratingly, many large-scale banks still partake in inconvenient scheduled maintenance;

the dreaded “we will be offline to perform updates from 11pm to 3am”. With our event driven

architecture, the digital bank’s core banking platform is entirely decoupled from the customer

mobile app. This means a reduction in dependencies between systems and therefore less risk

of outages to service. From a customer’s perspective, it means the app and many of its key

functions are effectively ‘always on’.

As a result, core banking applications could be taken offline—for downtime or database

predictions—without disrupting key customer experiences. Even with the core banking

platform offline, people can still use the mobile app to check balances, view detailed transaction

histories, lock accounts or cards, and more.

9

Better understand customer journeys and motivations by reconstructing views of

data

In a traditional approach, banks are entirely reliant on the current state of an object. For

example, a customer’s current account balance. With an event driven architecture, we can

reconstruct and view the series of transactions that led to a particular balance, or any other

series of sophisticated interactions that lead to a current customer’s state. This is incredibly

useful for optimising end user experience in customer apps, or in rapidly detecting potentially

fraudulent transactions.

Create opportunities for deeper customer engagements, even before they’re

designed

Unless they are specifically engineered to retain change logs over time, most monolithic

systems only provide a singular, current view of your data as it exists today. With the digital

bank’s ability to access a full history of events from the inception of a specific topic, we can

apply historical data to evolving business considerations.

For example, we might consider building a new loyalty feature into the customer-facing mobile

app. In order for the new feature to work, customers may need to match a specific behavioural

profile from the past 12 months; perhaps they have to deposit more than $8,000 into the app

in a number of consecutive months. With our event driven architecture, we can easily build out

a historical data profile of specific customers, feed it into a new service, and begin applying the

new customer feature where it’s relevant, as it is triggered. The next time a customer processes

the necessary number and amount of deposits, they get immediate access to the new feature.

10

03
TECHNOLOGY, TOOLS AND EVENTS IN THIRD-PARTY INTEGRATIONS.

The digital bank’s only channel is a

mobile customer app for day-to-day

banking.

The mobile customer banking app interfaces with the digital bank’s platform. The platform itself

is a microservices, event-driven stack hosted on Amazon Web Services.

In addition to leveraging event streaming for business process and customer experience, the

microservices use events to integrate with a variety of third-party solutions. Each microservice

is built and deployed on Amazon EKS as docker containers. The core banking platform is SAP.

Tools and third-party integrations

Using events and microservices to

prevent ‘domain bleeding’

Whenever you integrate with third-party systems, you inevitably come across varying platform

interfaces with different requirements for processing data. ‘Domain bleeding’ occurs when the

informational requirements for third-party systems create inconsistencies in labelling or data

structure between domains.

In most instances, there is a requirement to preserve a domain-specific language that makes

sense for your business. For example, our digital bank platform referred to savings as a ‘stash’,

while the core banking platform—SAP—used the more traditional ‘savings account’ terminology.

11

To preserve our preferred data structures and terminologies, we created an event driven

microservice with the sole purpose of transforming and restructuring various data attributes

while passing information to third-parties.

The same approach was used for integration with a third-party loan originations platform, and

others. The service would effectively translate information to meet the needs of the various

external interfaces we integrated with, while ensuring that everything worked seamlessly in our

platform and retained our bank’s preferred terminologies and data structures.

12

04
USING EVENTS FOR REGULATORY COMPLIANCE AND RECONCILIATION.

Like any Authorised Deposit-Taking

Institution (ADI), the digital bank

was bound to comply with various

regulatory and reporting requirements

by a national regulating body.

We structured events to ship data, in real time, for the purposes of automating reports and

facilitating internal reconciliation processes.

Rather than manually instigating a batched, end-of-month reporting process—which is common

practice—a regulatory reporting service performed the dedicated function of identifying any

relevant events in the queue and sending them to a data repository. As a result, various regulatory

reports were being updated and compiled from events in real-time, and ready for processing

whenever needed.

Using events to

automate reconciliation

The team used event streaming to automate reporting in

accordance with APRA’s financial claims scheme APS 910.

In our architecture, the digital bank’s platform was the master

for all account, transaction, and balance information. There was

a regulatory requirement to perform frequent reconciliations

between the digital bank platform and the core banking platform,

SAP, to provide assurance that the bank had a clear and consistent

view of all customer contact information.

To ensure any changes in the digital bank platform were reflected

in the core banking platform, we created event feeds from both.

The data from these feeds was pulled using Kafka Connect

and written to a dedicated service. This service performed

ongoing checks for reconciliation to ensure parity across both

customer data sets, and generated reports in accordance with the

regulatory requirement.

13

05
STRATEGIES FOR DATA MANAGEMENT.

With a wealth of incredibly valuable

data being generated by events—for

reporting, customer experience, and

more—cost-effective management

becomes crucial.

In our digital bank’s architecture, events are stored in the Kafka backbone, before eventually

being written to disk storage in the cloud. Today, there are a wide variety of convenient and highly

configurable managed service options available for offline event stream storage.

Ultimately, the data generated by an organisation—and particularly a bank, digital bank or

fintech—is one of its most valuable assets. In order to continue delivering innovative products

and services to customers, in the way they expect, the opportunities presented by event-based

architectures are crucial.

14

Want to
know more?
Are you interested in this project?

Or do you have one just like it?

Get in touch. We’d love to tell you more about it.

https://www.equalexperts.com/contact-us/

